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Abstract

We model a boundedly rational agent who su§ers from limited attention. The

agent considers each feasible alternative with a given (unobservable) probability, the

attention parameter, and then chooses the alternative that maximises a preference

relation within the set of considered alternatives. Both the preference and the

attention parameters are identified uniquely by stochastic choice data. The model

is the only one for which the impact of removing any alternative a on the choice

probability of any other alternative b is non-negative, asymmetric (either a impacts

b or vice-versa), menu independent, neutral (the same on any alternative in the

menu), and consistent with the impacts on a and b by a common third alternative.
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1 Introduction

We consider a boundedly rational agent who maximises a preference relation but who

makes random choice errors due to imperfect attention. We extend the classical revealed

preference method to this case of bounded rationality, and show how an observer of

choice frequencies can (1) test by means of simple axioms whether the data can have been

generated by the model, and (2) if the answer to (1) is in the a¢rmative, infer uniquely

both preferences and attention.

Most models of economic choice assume deterministic behaviour. The choice responses

are a function c that indicates the selection c (A) the agent makes from menu A. This

holds true both for the classical ‘rational’ model of preference maximisation (Samuelson

[39], Richter [33]) and for more recent models of boundedly rational choice.1 Yet there is

a gap between such theories and real data, which are noisy: individual choice responses

typically exhibit variability, in both experimental and market settings (McFadden [27]).

The choice responses in our model are a probability distribution p that indicates the

probability p(a,A) that alternative a is selected from menu A, as in the pioneering work of

Luce [19], Block and Marschak’s [3] and Marschak’s [21], and more recently Gul, Natenzon

and Pesendorfer [15] (henceforth, GNP).

Imperfect attention is what generates randomness and choice errors in our model.

Attention is a central element in human cognition (e.g. Anderson [2]) and was recognized

in economics as early as in the work of Simon [41]. For example, a consumer buying a

new PC is not aware of all the latest models and specifications and ends up making a

selection he later regrets;2 a doctor short of time for formulating a diagnosis overlooks the

relevant disease for the given set of symptoms; an ideological voter deliberately ignores

some candidates independently of their policies.3 In these examples the decision-maker

is able to evaluate the alternatives he considers (unlike, for example, a consumer who

1The works on deterministic choice mentioned in the paper constitute examples for this assertion.
2Goeree [12] quantifies this phenomenon with empirical data.
3See Wilson [47] for a consideration set approach to political competition. It is reported there that

African Americans tend to ignore Republican candidates in spite of the overlap between their policy

preferences and the stance of the Republicans, and even if they are dissatisfied with the Democratic

candidate.
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is uncertain about the quality of a product). Yet, for various reasons the agent misses

some relevant options through unawareness, overlooking, or deliberate avoidance. In these

examples, an agent does not rationally evaluate all objectively available alternatives in

A, but only pays attention to a (possibly strict) subset of them, C (A), which we call the

consideration set following the extensive marketing literature4 on brands and some recent

economics literature discussed below. Once a C (A) has been formed, a final choice is

made by maximising a preference relation over C (A), which we assume to be standard

(complete and transitive).

This two-step conceptualisation of the act of choice is rooted and well-accepted in

psychology and marketing science, and it has recently gained prominence in economics

through the works of Masatlioglu, Nakajima and Ozbay [23] - (henceforth, MNO) - and

Eliaz and Spiegler [8], [9]. The core development in our model with respect to earlier works

is that the composition of the consideration set C (A) is stochastic. Each alternative a

is considered with a probability  (a), the attention parameter relative to alternative a.

For example,  (a) may indirectly measure the degree of brand awareness for a product,

or the (complement of) the willingness of an agent to seriously evaluate a political can-

didate. Such partial degrees of awareness or willingness to consider are assumed to be

representable by a probability.

We view the amount of attention paid to an alternative as a fixed characteristic of the

relationship between agent and alternative. The assumption that the attention parameter

is menu independent is undoubtedly a substantive one. It does have, however, empirical

support.5 And, at the theoretical level, the hypothesis of independent attention para-

meters is a natural starting point, as on the one hand we show that unrestricted menu

dependence yields a model with no observable restrictions (Theorem 2), and on the other

hand it is not clear a priori what partial restrictions should be imposed on stochastically

menu dependent parameters.

4Originating in Wright and Barbour [48]. See also Shocker, Ben-Akiva, Boccara and Nedungadi [40],

Roberts and Lattin ([35],[36]) and Roberts and Nedungadi [37].
5For example van Nierop et al [32] estimate an unrestricted probabilistic model of consideration set

membership for product brands, and find that the covariance matrix of the stochastic disturbances to

the consideration set membership function can be taken to be diagonal.

3



The work by MNO [23] is especially relevant for this paper as it is the first to study

how attention and preferences can be retrieved from choice data in a consideration set

model of choice. However, the choice responses in their model are deterministic, and like

in many other two-stage deterministic models of choice,6 it is not possible to pin down

the primitives entirely by observing the choice data that it generates, even after imposing

some structure on the first-stage selection.7 An attractive feature of our model is that

it a§ords a unique identification of the primitives (preferences and attention parameters)

by means of stochastic choice data. The key observation for preference revelation in our

model generalizes a feature of classical revealed preference analysis. If an alternative a is

preferred to an alternative b, the probability with which a is chosen (in the deterministic

case, whether a is chosen) from a menu cannot depend on the presence of b, whereas the

probability with which b is chosen can be a§ected by the presence of a. As explained in

section 3) it is also easy to identify the attention parameters in several choice domains.

The main formal result of the paper is a characterization of the model by means of

five axioms (Theorem 1) that make simple regularity and independence assumptions on

the e§ect of the removal of an alternative a from a menu on the choice probability of

another alternative b, which we call in short the impact of a on b. Our random choice

rule is the only one for which the impact of a on b is: non-negative, asymmetric (exactly

one of a and b has a strictly positive impact on the other), menu-independent (it does

not depend on other alternatives in the menu), neutral (it is the same, when positive, on

any other alternative in the menu), and consistent with the impacts on a and b by a third

alternative c (if c impacts b more than a, then a impacts b more than b impacts a).

Our model can be viewed, as explained in section 7.1, as a special type of Random

Utility Maximisation, and rationalises plausible types of choice mistakes that cannot be

captured by the Luce [19] rule (another special type of Random Utility Maximisation), in

which

p(a,A) = v (a) /
X

b2A

v (b) ,

6E.g. our own "shortlisting" method [20].
7An example is provided in section 6. Tyson [45] clarifies the general structure of two-stage models of

choice.
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for some strictly positive utility function v.8 The Luce rule cannot, for example, explain

any choice pattern such that p (a, {a, b}) = p (a, {a, b, c}) (which as noted defines a pref-

erence for a over c in our setting), since this would imply p (a, {a, b}) = u(a)
u(a)+u(b)

and

p (a, {a, b, c}) = u(a)
u(a)+u(b)+u(c)

, and therefore the contradiction u (c) = 0. Yet this type of

pattern appears natural when stochastic behavior is governed by a preference ordering and

preserves a core feature of rational deterministic choice, namely that inferior alternatives

have no bearing on the choice of better ones. Put another way, the Luce rule forces in

this respect a strong departure (a form of menu-dependence) from rational deterministic

choice. In section 4 we expand on other behavioural phenomena that are compatible with

a random consideration set model but not with other models (such as the recent extension

of the Luce rule by GNP [15]). Our model reproduces in particular the well-known blue

bus/red bus type of menu e§ect (Debreu [6]), in which an agent’s odds of choosing a bus

over a train are sensitive to the addition of buses that di§er only in colour. But it also

shows that a di§erent type of menu e§ect, not considered by Debreu and the subsequent

commentators, and not captured by a Luce-type model, can be plausible in the example:

the removal of ‘duplicate alternatives’ (e.g. a blue bus when a red bus is available) may

well decrease the choice probability of the remaining duplicate alternatives (by reducing

the attention paid to them) instead of increasing it. Finally, we highlight how in spite of

the transitivity of the underlying preference, the random consideration set model is com-

patible with widely observed forms of stochastic intransitivity that are instead excluded

by Luce.

2 Random choice rules

There is a nonempty finite set of alternatives X, and a domain D of subsets (the menus)

of X. We allow the agent to not pick any alternative from a menu, so we also assume the

existence of a default alternative a (e.g. walking away from the shop, abstaining from

8The Luce model is equivalent to the multinomial logit model (McFadden [26]) popular in econometric

studies.
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voting, exceeding the time limit for a move in a game of chess).9 Denote X = X [ {a}

and A = A [ {a} for all A 2 D.

Definition 1 A random choice rule is a map p : XD ! [0, 1] such that
P

a2A p (a,A) =

1 for all A 2 D and p (a,A) = 0 for all a /2 A.

The interpretation is that p (a,A) denotes the probability that the alternative a 2 A

is chosen when the possible choices (in addition to the default a) faced by the agent

are the alternatives in A. Note that a is the action taken when the menu is empty,

p (a,?) = 1.

We define a new type of random choice rule by assuming that the agent has a strict

preference ordering  on A. The preference  is applied only to a consideration set

C (A)  A of alternatives (the set of alternatives the decision maker pays attention to).

We allow for C (A) to be empty, in which case the chooser picks the default option a, so

that p (a, A) is the probability that C (A) is empty. The membership of C (A) for the

alternatives in A is probabilistic. For all A 2 D, each alternative a has a probability  (a)

of being in C (A). Formally:

Definition 2 A random consideration set rule is a random choice rule p, for which

there exists a pair (, ), where  is a strict total order on X and  is a map  : X !

(0, 1), such that10

p, (a,A) =  (a)
Y

b2A:ba

(1  (b)) for all A 2 D, for all a 2 X

3 Characterisation

3.1 Revealed preference and revealed attention

Suppose the choice data are generated by a random consideration set rule. Can we infer

the preference ordering from the choice data? One way to extend the revealed preference

ordering of rational deterministic choice to stochastic choices is (see GNP [15]) to declare

9For a recent work on allowing ‘not choosing’ in the deterministic case, see Gerasimou [11]. Earlier

work is Clark [5].
10We use the convention that the product over the empty set is equal to one.
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a  b i§ p (a,A) > p (b, A) for some menu A. However, depending on the underlying choice

procedure, a higher choice frequency for a might not be due to a genuine preference for a

over b, and indeed this is not the way preferences are revealed in the random consideration

set model. The discrepancy is due to the fact that an alternative may be chosen more

frequently than another in virtue of the attention paid to it as well as of its ranking.

We consider a di§erent natural extension of the deterministic revealed preference that

accounts for this feature while retaining the same flavour as the standard non stochastic

environment.

In the deterministic case the preference of a over b has (among others) two observable

features: (1) when a is chosen it remains chosen when b is removed;11 and (2) b can

turn from rejected to chosen when a is removed. Either feature reveals unambiguously

that a  b and has an analog in our random consideration set framework. In case (1),

if a  b, then removing b won’t a§ect the probability that a is chosen, since the latter

only depends on the probability that itself and higher ranked alternatives are considered.

Thus, p (a,A) = p (a,A\ {b}). And conversely, if removing b leaves a’s choice probability

unchanged, then it must have been the case that b was ranked below a, for otherwise

there would have been a positive probability event of it being considered and preventing

a from being chosen. Similarly in case (2), if removing a increases the choice probability

of b, a must be better ranked than b. And conversely if a  b then excising a from

A removes the event in which a is considered preventing b from being chosen, so that

p (b, A) > p (b, A\ {a}). Together, p (a,A) = p (a,A\ {b}) and p (b, A) > p (b, A\ {a})

constitute the revealed preference relation a  b of our model. We will show that this

relation is revealed uniquely.

Next, given a preference , clearly the attention paid to an alternative a is revealed

directly by the probability of choice in any menu in which a is the best alternative.

However, provided that there are at least three alternatives and that binary menus are

included in the domain,  (a) is identified even without the need of knowing the preference

11This feature is called Cherno§’s axiom.
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or indeed the choice probability of a from any menu, via the formula

 (a) = 1

s
p (a, {a, b}) p (a, {a, c})

p (a, {b, c})

which must hold since under the model p (a, {b, c}) = (1  (b)) (1  (c)) and therefore

(1  (a))2 p (a, {b, c}) = (1  (a))2 [(1  (b)) (1  (c))]

= [(1  (a)) (1  (b))] [(1  (a)) (1  (c))]

= p (a, {a, b}) p (a, {a, c}) .

These considerations suggest that the restrictions on observable choice data that char-

acterize the model are those ensuring that, firstly, the revealed preference relation  indi-

cated above is well-behaved, i.e. it is a strict total order on the alternatives; and, secondly,

that the observed choice probabilities are consistent with this  being maximised on the

consideration sets that are stochastically generated by the revealed attention parameters.

3.2 Axioms and characterisation theorem

As explained in the introduction, all our axioms constrain the ‘impacts’ p(a,A\{b})
p(a,A)

that an

alternative b has on another alternative a. The following properties are intended for all

A,B 2 D:

A1 (Non-negativity). For all a 2 A and b 2 A: p(a,A\{b})
p(a,A)

 1.

A2 (Asymmetry). For all a, b 2 A: p(a,A\{b})
p(a,A)

6= 1, p(b,A\{a})
p(b,A)

= 1.

A3 (Menu independence). For all a 2 A \B and b 2 A \B: p(a,A\{b})
p(a,A)

= p(a,B\{b})
p(a,B)

.

A4 (Neutrality). For all a, b 2 A and c 2 A: p(a,A\{c})
p(a,A)

, p(b,A\{c})
p(b,A)

> 1 ) p(a,A\{c})
p(a,A)

=

p(b,A\{c})
p(b,A)

.

A5 (Third-alternative consistency). For all a, b, c 2 A: p(a,A\{c})
p(a,A)

< p(b,A\{c})
p(b,A)

)
p(b,A\{a})
p(b,A)

> p(a,A\{b})
p(a,A)

The iteration of A1 leads to the standard axiom of Regularity (or Monotonicity)12.

A2 says that (as in rational deterministic choice) exactly one of any two alternatives
12Regularity: A  B ) p (a,A)  p (a,B).
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has a strictly positive impact on the other. A3 states that the e§ect of removing an

alternative on the choice probability of another alternative should not depend on which

other alternatives are present in the menu. It is a simple form of menu-independence,

alternative to Luce’s IIA. Instead A4, stating that the positive impact of an alternative

is the same on any other alternative in the menu, is implied by the Luce axiom. In

fact, A4 also states that p(a,A\{c})
p(b,A\{c}) =

p(a,A)
p(b,A)

under the restriction in the premise, while

the Luce axiom asserts the same form of menu independence (and more) unconditionally.

We elaborate on why this restriction of Luce’s IIA is sensible in section 4. Finally, A5

concludes that a is more impacted by b than vice-versa from the observation of the stronger

impact exerted on a by a common third alternative c. In this sense the relative strengths

of two alternatives are revealed by the behaviour of these alternatives against the common

third alternative (similarly to the way in which, in rational deterministic choice, if c does

not a§ect whether b is chosen but it does a§ect whether a is chosen, then b must be better

than a).

Theorem 1 Let D = 2X . A random choice rule p such that p (a,A) 2 (0, 1) for all A 2 D

and for all a 2 A, satisfies A1-A5 if and only if it is a random consideration set rule p,.

Moreover, both the quality ranking  and the attention profile  are unique, that is, for

any random choice rule p0,0 such that p0,0 = p we have (0, 0) = (, ).

The logic behind the su¢ciency part of the proof is simple. Under A1-A3 the revealed

preference described in section 3.1 is total and asymmetric, and adding A5 makes it transi-

tive, so that it is taken as our preference ranking. Given our domain, the attention value

 (a) can be defined from the probabilities p (a, {a}). Then A3-A4 are shown to imply

the following property: whenever b has a positive impact on a, p (a,A\ {b}) = p(a,A)
(1p(b,{b})) .

This is a weak property of ‘stochastic path independence’ that may be of interest in itself:

it asserts that the impact of b on a must depend only on the ‘strength’ of b in single-

ton choice.13 Finally, the iterated application of this formula shows that the preference

and the attention parameters defined above retrieve the given choice probabilities via the

assumed procedure.

13A similar stochastic path independence property appears as an axiom in Yildiz [50].
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4 Explaining Menu e§ects and Stochastic Intransi-

tivity

4.1 Menu e§ects

Luce [19] states a menu-independence property that characterizes the Luce choice rule:

Luce’s IIA: For all A,B 2 D and a, b 2 A \B: p(a,A)
p(b,A)

= p(a,B)
p(b,B)

.

Our model suggests that a natural reason why this property might not hold is that

a third alternative may be in di§erent positions (in the preference ranking) relative to a

and b and thus may impact on their choice probabilities in di§erent ways. For a random

consideration set rule, Luce’s IIA is only satisfied for sets A and B that di§er exclusively

for alternatives each of which is either better or worse than both a and b, but otherwise

menu-e§ects can arise. So if a  c  b and a, b, c 2 A

p, (a,A)

p, (b, A)
=

 (a)

 (b)
Q

d2A:adb
(1  (d))

>
 (a)

 (b)
Q

d2A\{c}:adb
(1  (d))

=
p, (a,A\ {c})
p, (b, A\ {c})

violating Luce’s IIA. In fact, for certain configurations of the attention parameters, the

addition or elimination of other alternatives can even reverse the ranking between the

choice frequencies of two alternatives a and b:

Example 1 (Choice frequency reversal) Let a  c  b and  (b) > (a)
1(a) >  (b) (1

 (c)). Then

p,(a, {a, b, c}) =  (a) >  (b) (1  (a)) (1  (c)) = p (b, {a, b, c})

and

p,(a, {a, b}) =  (a) <  (b) (1  (a)) = p,(b, {a, b})

The basis for the choice frequency reversal is the general property that the presence

of a high-attention alternative (c in the example) strongly a§ects the choice probabilities
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of the alternatives worse than c while leaving una§ected the choice probabilities of those

better than c.

However, as our characterization makes clear, a random consideration set rule does

satisfy other forms of menu-independence and consistency that are arguably as natural

as Luce’s IIA.

The dependence of the choice odds on the other available alternatives is often a re-

alistic feature, which applied economist have sought to incorporate, for example, in the

multinomial logit model.14 The blue bus/red bus example (Debreu [6]) is the standard

illustration, in which menu e§ects appear because of an extreme ‘functional’ similarity

between two alternatives (a red and a blue bus). Suppose the agent chooses with equal

probabilities a train (t), a red bus (r) or a blue bus (b) as a means of transport in every

pairwise set, so that the choice probability ratios in pairwise choices for any two alterna-

tives are equal to 1. Then, on the premise that the agent does not care about the colour

of the bus and so is indi§erent between the buses, it is argued that adding one of the

buses to a pairwise choice set including t will increase the odds of choosing t over either

bus, thus violating IIA.15

GNP [15] suggest to deal with this form of menu-dependence by proposing that ‘du-

plicate’ alternatives (such as a red and a blue bus) should be identified observationally,

by means of choice data, and by assuming that duplicate alternatives are (in a specific

sense) ‘irrelevant’ for choice. In the example each bus is an observational duplicate of the

other because replacing one with the other does not alter the probability of choosing t

in a pairwise contest. The assumption of duplicate elimination says in this example that

the probability of choosing t should not depend on whether a duplicate bus is added to

either choice problem that includes the train.16

Our model (once straightforwardly adapted to account for preference ties), highlights

14By adding a nested structure to choice process (nested logit) or by allowing heteroscedasticity of the

choice errors (see e.g. Greene [14] or Agresti [1]). A probit model also allows for menu e§ects.
15For the sake of precision, Debreu’s original example used as ‘duplicate’ alternatives two recordings

of Beethoven’s eighth symphony played by the same orchestra but with two di§erent directors. As

preferences for Directors can be very strong, we use instead McFadden’s [26] version of the example.
16The general duplicate elimination assumption is more involved but follows the same philosophy.
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however that a new type of menu e§ect may be plausibly caused by the elimination of

duplicate alternatives. In general, it is immediate to see that two indi§erent alternatives

in a random consideration set rule are always observational duplicates whenever they

are paid equal attention, but their elimination can have very di§erent e§ects depending

on their ranking with respect to the other alternatives. We illustrate this in the blue

bus/red bus example. The preference relation is now a weak order %. We assume that all
alternatives in the consideration set that tie for best are chosen with equal probability,

and otherwise the model is unchanged. Let  (t) = y and  (b) =  (r) = x. Assume first

that

t  b  r

In this case r and b are duplicates according to GNP’s definition because p, (t, {b, t}) =

p (t, {r, t}) = y. The duplicate elimination assumption holds because p, (t, {b, r, t}) = y.

Furthermore, we have (assuming that in case both buses are considered then each of them

is chosen with probability 1
2
):

p, (b, {b, r, t})
p, (t, {b, r, t})

=
(1 y)


x2 1

2
+ x (1 x)



y

p, (b, {b, t})
p, (t, {b, t})

=
(1 y) x

y

and therefore
p,(b,{b,r,t})
p,(t,{b,r,t})
p,(b,{b,t})
p,(t,{b,t})

= 1
x

2

so that, independently of the attention profile ,

p, (b, {b, r, t})
p, (t, {b, r, t})

<
p, (b, {b, t})
p, (t, {b, t})

That is, the odds that the blue bus is chosen over the train necessarily increase when the

red bus is made unavailable, which accords (observationally) with the Debreu story.

Assume instead that

b  r  t

In this case too b and r are duplicates because p, (t, {b, t}) = p, (t, {r, t}) = y (1 x).

But now the duplicate elimination assumption fails since p, (t, {b, r, t}) = y (1 x)
2 6=

p, (t, {b, t}). In addition, we have:
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p, (b, {b, r, t})
p, (t, {b, r, t})

=
x2 1

2
+ x (1 x)
y (1 x)2

p, (b, {b, t})
p, (t, {b, t})

=
x

y (1 x)

and therefore
p,(b,{b,r,t})
p,(t,{b,r,t})
p,(b,{b,t})
p,(t,{b,t})

=
1 x

2

1 x

so that independently of the attention profile 

p, (b, {b, r, t})
p, (t, {b, r, t})

>
p, (b, {b, t})
p, (t, {b, t})

Therefore the odds that the blue bus is chosen over the train in this case necessarily

decrease when the red bus is made unavailable, for all possible levels of attention paid to

buses and train, which is the reverse of the Debreu story.

In conclusion, we argue that the blue bus/red bus example is slightly misleading in

one respect. All commentators accept Debreu’s conclusion that once a red bus is added

to the pair {blue bus, train}, the odds of choosing the train over the blue bus should

increase. But this conclusion is not evident in itself: it must depend on some conjecture

about the cognitive process that generates the choice data, and in this case it is based in

particular on the hypothesis that a Luce-like model continues to hold (as the GNP [15]

modification of the Luce rule well illustrates). The analysis above suggests that menu

e§ects of a di§erent type may occur. A consumer faced with multiple bus options may

well be more inclined to choose one of them at the expense of the train option. In short,

the random consideration set rule shows that crude choice probabilities are not necessarily

a reliable guide to uncovering the underlying preferences: once this is recognised, some

menu e§ects cease to appear paradoxical.

4.2 Stochastic Intransitivity

Several psychologists, starting from Tversky [42], have noted how choices may well fail

to be transitive. When choice is stochastic there are many ways to define analogues of

transitive behaviour in deterministic models. A weak such analogue often observed to be

violated in experiments is the following:
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Weak stochastic transitivity: For all a, b, c 2 X, p (a, {a, b})  1
2
, p (b, {b, c})  1

2
)

p (a, {a, c})  1
2
.

It is easy to see that a random consideration set rule can account for violations of

Weak stochastic transitivity, and thus of the stronger version17

Strong stochastic transitivity: For all a, b, c 2 X, p (a, {a, b})  1
2
, p (b, {b, c})  1

2
)

p (a, {a, c})  max {p (a, {a, b}) , p (b, {b, c})}.

Consider the following

Example 2 Set  (a) = 4
9
,  (b) = 1

2
and  (c) = 9

10
with a  b  c. We have:

p, (c, {a, c}) =
9

10

5

9
=
1

2

p, (b, {b, c}) =
1

2

but also

p, (b, {a, b}) =
1

2

5

9
=
5

18
<
1

2

violating Weak stochastic transitivity.

The key to obtaining the violation in the example is that the attention ordering is

exactly opposite to the quality ordering of the alternatives. It is easy to check that if

the attention ordering weakly agrees with the quality ordering, choices are stochastically

transitive.

Thus, the random consideration set rule reconciles a fundamentally transitive motiva-

tion (the deterministic preference ) with stochastic violations of transitivity in the data.

In contrast, the Luce rule must necessarily satisfy Weak Stochastic Transitivity.

5 Menu-dependent attention parameters

In some circumstances it may be plausible to assume that the attention parameter of

an alternative depends on which other alternatives are feasible. In this section we show
17In their survey on choice anomalies Rieskamp, Busemeyer and Meller [34] write: “Does human choice

behavior obey the principle of strong stochastic transitivity? An overwhelming number of studies suggest

otherwise" (p. 646).
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however that a less restricted version of our model that allows for the menu dependence

of attention parameters is too permissive. A menu dependent random consideration set

rule is a rule p, for which there exists a pair (, ), where  is a linear order on X and

 is a map  : X D ! (0, 1), such that

p, (a,A) =  (a,A)
Y

b2A:ba

(1  (b, A)) for all A 2 D, for all a 2 X

Theorem 2 For every strict total order  on X and for every random choice rule p for

which p (a,A) 2 (0, 1) for all A 2 D and a 2 A, there exists a menu dependent random

consideration rule p, such that p = p,.

So, once we allow the attention parameters to be menu dependent, not only does the

model fail to place any observable restriction on choice data, but the preference relation is

also entirely unidentified. Strong assumptions on the function  must be made to make the

model with menu dependent attention useful, but we find it di¢cult to determine a priori

what assumptions are appropriate, especially as the available empirical evidence on brands

seems to suggest at best weak correlations between the probabilities of memberships of

the consideration set, and therefore weak menu e§ects (van Nierop et al. [32]).

6 Related literature

The most related economic papers to ours conceptually are MNO [23] and Eliaz and

Spiegler ([8], [9]). Exactly as in their models, an agent in our model who chooses from

menu A maximises a preference relation on a consideration set C (A). The di§erence

lies in the mechanism with which C (A) is formed (note that in the deterministic case,

without any restriction, this model is empirically vacuous, as one can simply declare

the observed choice from A to be equal to C (A)). While Eliaz and Spiegler focus on

market competition and the strategic use of consideration sets, MNO focus on the direct

testable implications of the model and on the identification of the parameters. Our work

is thus more closely related to that of MNO. When the consideration set formation and

the choice data are deterministic as in MNO, consider a choice function c for which

c ({a, b}) = a = c ({a, b, c}), c ({b, c}) = b, c ({a, c}) = c. Then (as noted by MNO), we

15



cannot infer whether (i) a  c (in which case c is chosen over a in a pairwise contest

because a is not paid attention to) or (ii) c  a (in which case c is never paid attention

to). The random consideration set model shows how richer data can help break this type

of indeterminacy. In case (i), the data would show that the choice frequency of a is the

same in {a, b, c} as in {a, b}. In case (ii), the data would show that the choice frequency

of a would be higher in {a, b} than in {a, b, c}.

We next focus on the relationship with models of stochastic choice.

Tversky’s ([43], [44]) classical Elimination by Aspects (EBA) rule p", which satisfies

Regularity, is such that there exists a real valued function U : 2X ! <+ such that for all

A 2 D, a 2 A:

p" (a,A) =

P
BX:B\A6=A U (B) p" (a,B \ A)P

BX:B\A6=? U (B)

There are random consideration set rules that are not EBA rules. Tversky showed that

for any three alternatives a, b, c EBA requires that if p" (a, {a, b})  1
2
and p" (b, {b, c})  1

2
,

then p" (a, {a, c})  min {p" (a, {a, b}) , p" (b, {b, c})} (Moderate stochastic transitivity).

Example 2 shows that this requirement is not always met by a random consideration set

rule.

Recently, GNP [15] have shown that, in a domain which is ‘rich’ in a certain technical

sense, the Luce model is equivalent to the following Independence property (which is an or-

dinal version of Luce’s IIA): p (a,A [ C)  p (b, B [ C) implies p (a,A [D)  p (b, B [D)

for all sets A,B,C and D such that (A [ B) \ (C [ D) = ?. They also generalise the

Luce rule to the Attribute Rule in such a way as to accommodate red bus/blue bus type

of violations of Luce’s IIA (see section 4). We have seen that a random consideration set

rule violates one of the key axioms (duplicate elimination) for an Attribute Rule. And

the choice frequency reversal Example 1 violates the Independence property above.

Stochastic choice is also the focus of the anticipated choice model characterised in

Koida [18]. In this model, though, the emphasis is on how a decision maker’s (probabilis-

tic) mental states drive the choice of an alternative from each menu, in turn determining in

non-obvious ways the agent’s preferences over menus. In our setup we instead concentrate

on mistakes before choice is made.

Mattsson and Weibull [25] obtain an elegant foundation for (and generalisation of) the
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Luce rule. In their model the agent (optimally) pays a cost to get close to implementing

any desired outcome (see also Voorneveld [46]). More precisely, the agent has to exert

more e§ort the more distant the desired probability distribution from a given default

distribution. When the agent makes an optimal trade-o§ between the expected payo§ and

the cost of decision control, the resulting choice probabilities are a ‘distortion’ of the logit

model, in which the degree of distortion is governed by the default distribution. In one

way our paper shares with this work the broad methodology to focus on a detailed model

to explain choice errors. However, it is also very di§erent in that the latter assumes a

(sophisticated form of) rational behaviour on the part of the agent. One may then wonder

whether ‘utility-maximisation errors’ might not occur at the stage of making optimal

tradeo§s between utility and control costs, raising the need to model those errors. A

second major di§erence stems from the fact that our model uses purely ordinal preference

information. Similar considerations apply to the more recent works by Matějka and

McKay [24] and Cheremukhin, Popova and A. Tutino [4] in which it is assumed that an

agent faces the costly option of studying (rather than implementing) the outcome and

chooses the level of attention optimally.

Recently, Rubinstein and Salant [38] have proposed a general framework to describe

an agent who expresses di§erent preferences under di§erent frames of choice. The link

with this paper is that the set of such preferences is interpreted as a set of deviations

from a true (welfare relevant) preference. However, their analysis takes a very di§erent

direction from ours in that it eschews any stochastic element.

Finally, we note that the natural appeal of a two stage structure with a stochastic first

stage extends beyond economics, from psychology to consumer science. In philosophy

in particular, it has been taken by some (e.g. William James [17], Daniel Dennett [7],

Martin Heisenberg [16]) as a fundamental feature of human choices, and as a solution of

the general problem of free will.
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7 Concluding remarks18

7.1 Random consideration sets and RUM

A Random Utility Maximization (RUM) rule [3] is defined by a probability distribution

 on the possible rankings of the elements of X and the assumption that the agent

picks the top element of the ranking extracted according to . Block and Marschak [3],

McFadden [26] and Yellot [49] have shown that the Luce model is a particular case of a

RUM rule, in which a systematic utility is subject to additive random shocks that are

Gumbel distributed. The example given in the introduction of the pattern p (a, {a, b}) =

p (a, {a, b, c}) shows that the choice probabilities of a random consideration set rule can

never be generated by the particular RUM rule constituted by a Luce model. However a

random consideration set rule (, ) is itself a special type of RUM rule. In this rule, 

assigns independently for each alternative a probability (1  (a)) to all rankings in which

a is below the default alternative a, and if  assigns positive probability to a ranking in

which b is above a but a  b, then a is also ranked below a. An interpretation of this

RUM is that the agent is ‘in the mood’ for each alternative a with probability  (a) (and

otherwise he prefers the default alternative), and he picks the preferred one among all

alternatives for which he is in the mood. While indistinguishable in terms of pure choice

data, the RUM interpretation and the consideration set interpretation imply di§erent

attitudes of the agent to ‘implementation errors’: if a is chosen but b  a is implemented

by mistake (e.g. a dish di§erent from the one ordered is served in a restaurant), the agent

will have a positive reaction if he failed to pay attention to b, but he will have a negative

reaction if he wasn’t in the mood for b.

7.2 Comparative attention

A natural definition of comparative attention based on observed choice probabilities

is as follows: (1, 1) is more attentive than (2, 2), denoted (1, 1) (2, 2), i§

p1,1 (a
, A) < p2,2 (a

, A) for all A 2 D. With the domain of theorem 1, we have

18We thank the referees for suggesting most of the insights in this section.
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that (1, 1) (2, 2) i§ 1 (a) > 2 (a) for all a 2 X (the ‘if’ direction follows im-

mediately from the formula p, (a, A) =
Q
a2A

(1  (a)), while the other direction fol-

lows from p, (a
, {a}) = (1  (a)) applied to each {a} 2 D). Observe that for two

agents with the same preferences, (, 1) is more attentive than (, 2) i§ agent 1 makes

‘better choices’ from each menu in the sense of first order stochastic dominance, that is

p,1 (a  b, A) > p,2 (a  b, A) for all b 2 A
 with b 6= max (A,), where p, (a  b, A)

denotes the probability of choosing an alternative in A better than b.

For general domains, the previous characterisation of the relation  does not neces-

sarily hold. However, in a one-parameter version of the model in which all alternatives

receive the same attention g 2 (0, 1), it follows from the formula p,g (a, A) = (1 g)
|A|

that (1, g1) (2, g2) i§ g1 > g2.

7.3 A model without default

A natural companion of our model that does not postulate a default alternative is one in

which if the agent misses all alternatives he is given the option to ‘reconsider’, repeating

the process until he notices some alternative. This leads to choice probabilities of the

form:

p, (a,A) =

 (a)
Q

b2A:ba
(1  (b))

1
Q
b2A
(1  (b))

This model does not have the same identifiability properties as ours. For example,

take the case X = {a, b}, with p (a, {a, b}) =  and p (b, {a, b}) = .19 These observations

(which fully identify the parameters in our model) are compatible with both the following

continua of possibilities:

• a  b and any  such that (a)
1(a) =



 (b);

• b  a and any  such that (b)
1(b) =



 (a).

Nevetheless, the model is interesting and it would be desirable to have an axiomatic

characterisation of it. We leave this as an open question.

19Obviously in this model p (a, {a}) = 1 for all a 2 X.
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8 Appendix: Proofs

Proof of Theorem 1

The necessity part of the statement is immediately verified by checking the formula and

thus omitted. For su¢ciency, let p be a random choice rule that satisfies A1-A5. De-

fine a binary relation R on X by aRb i§ there exists A 2 D with a, b 2 A such that

p (b, A\ {a}) > p (b, A). We show that R is total, asymmetric and transitive. Totality

follows immediately from A1-A2 and asymmetry from A2-A3. For transitivity, suppose

aRbRc. Then p (b, A\ {a}) > p (b, A\ {a}) and p (c, B\ {c}) > p (c, B) for some A and B

with a, b 2 A and b, c 2 C. By A3 the first inequality implies

p (b, {b, c}) > p (b, {a, b, c})

and similarly p (c, {a, c}) > p (c, {a, b, c}). If by contradiction not (aRc), then since R is

total cRa, that is p (a, {a, b}) > p (a, {a, b, c}) and thus by A2

p (c, {a, b, c}) = p (c, {b, c})

By the two displayed formulae and A5 we have p(b,{a,b})
p(b,{a,b,c}) >

p(c,{a,c})
p(a,{a,b,c}) , a contradiction

with p(c,{a,c})
p(a,{a,b,c}) > 1 (A1-A2 imply that exactly one of the two ratios is greater than one).

Finally, observe that (using A2 and A3) the following three statements are equivalent:

aRb

p (b, A\ {a}) > p (b, A) for all A 2 D with a, b 2 A

p (a,A\ {b}) = p (a,A) for all A 2 D with a, b 2 A (1)
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Next, we show that for all A 2 D,

p (a,A\ {b}) > p (a,A)) p (a,A\ {b}) (1 p (b, {b})) = p (a,A) (2)

Since p (a,?) = 1 and p (a, {b}) + p (b, {b}) = 1 we have p(a,?)
p(a,{b}) =

1
1p(b,{b}) , so that by

A3 p(a,A\{b})
p(a,{A}) =

1
1p(b,{b}) > 1 for all A 2 D with b 2 A and then by A4

p(a,A\{b})
p(a,{A}) =

1
1p(b,{b})

for all a 2 A for which p(a,A\{b})
p(a,{A}) > 1, establishing the claim.

Now define = R and  (a) = p (a, {a}) for all a 2 X. We show that p, = p. Fix

A 2 D and number the alternatives so that A = {a1, ..., an} and ai  aj , i < j. For all

a 2 A the implication in (2) and the definitions of  and  imply that

p (ai, A) = p (ai, {a2, ..., an}) (1  (a1))
...

= p (ai, {ai, ..., an})
Y

j<i

(1  (aj))

= p (ai, {ai})
Y

j<i

(1  (aj))

=  (ai)
Y

j<i

(1  (aj)) = p, (ai, A)

where the equality in the second to last line follows from the properties of R displayed in

(1).

To conclude we show that  and  are defined uniquely. Let p0,0 be another consid-

eration set rule for which p0,0 = p, and suppose by contradiction that 0 6=. So there

exists a, b 2 X such that a  b and b 0 a. Take A = {a} [ {c 2 X : a  c}, for which

b 2 A for some b with b 0 a. By definition, p, (a,A) =  (a) = p, (a,B) for all B  A

such that a 2 B, but also

p0,0 (a,A) = 
0 (a)

Y

c2A:c0a

(1 0 (c)) < 0 (a)
Y

c2A\{b}:c0a

(1 0 (c)) = p0,0 (a,A\ {b})

a contradiction in view of p0,0 = p = p,. So  is unique. The uniqueness of  is

immediate from p (a, {a}) =  (a).

Proof of Theorem 2. Let p be a random choice rule. Let  be an arbitrary linear order

of the alternatives. Define  by setting, for A 2 D and a 2 A:

 (a,A) =
p (a,A)

1
P

b2A:ba
p (b, A)

(3)
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Observe that  (a,A) > 0 whenever p (a,A) > 0 and  (a,A) < 1 since 1 > p (a,A) +
P

b2A:ba
p (b, A).

For the rest of the proof fix a 2 A. We define

p, (a,A) =  (a,A)
Y

b2A:ba

(1  (b, A))

and show that p, (a,A) = p (a,A). Using the definition of , for all b 2 A we derive

1  (b, A) =
1

P
c2A:cb

p (c, A) p (b, A)

1
P

c2A:cb
p (c, A)

(4)

so that
Y

b2A:ba

(1  (b, A)) =
Y

b2A:ba

1
P

c2A:cb
p (c, A) p (b, A)

1
P

c2A:cb
p (c, A)

(5)

Given any b 2 A, denote by b+ 2 A the unique alternative for which b+  b and there

is no c 2 A such that b+  c  b. Letting b 2 {c 2 A : c  a}, from (4) we have that

1 

b+, A


=

1
P

c2A:cb+
p (c, A) p (b+, A)

1
P

c2A:cb+
p (c, A)

=

1
P

c2A:cb
p (c, A)

1
P

c2A:cb+
p (c, A)

As the numerator of the expression for 1   (b+, A) is equal to the denominator of

the expression for 1  (b, A), more in general the product in (5) is a telescoping product

(where observe that for the  maximal term in A the denominator is equal to 1), and

we thus have:

Y

b2A:ba

(1  (b, A)) = 1
X

b2A:ba+
p (b, A) p


a+, A



= 1
X

b2A:ba

p (b, A)

We conclude that

p, (a,A) =  (a,A)
Y

b2A:ba

(1  (b, A))

=
p (a,A)

1
P

b2A:ba
p (b, A)

 
1

X

b2A:ba

p (b, A)

!

= p (a,A)
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as desired (where the first term in the second line follows from (3)).

Possible online appendices

A Independence of the axioms

First we recall the axioms - next we provide examples of random choice rules that fail

to satisfy only one of the axioms, and show that they are not random consideration set

rules.

A1 (Non-negativity). For all a 2 A and b 2 A: p(a,A\{b})
p(a,A)

 1.

A2 (Asymmetry). For all a, b 2 A: p(a,A\{b})
p(a,A)

> 1, p(b,A\{a})
p(b,A)

6= 1.

A3 (Menu independence). For all a 2 A \B and b 2 A \B: p(a,A\{b})
p(a,A)

= p(a,B\{b})
p(a,B)

.

A4 (Neutrality). For all a, b 2 A and c 2 A: p(a,A\{c})
p(a,A)

, p(b,A\{c})
p(b,A)

> 1 ) p(a,A\{c})
p(a,A)

=

p(b,A\{c})
p(b,A)

.

A5 (Third-alternative consistency). For all a, b, c 2 A: p(a,A\{c})
p(a,A)

< p(b,A\{c})
p(b,A)

)
p(b,A\{a})
p(b,A)

> p(a,A\{b})
p(a,A)

Fails only Non-negativity. Let X = {a, b, c}, and assume choice probabilities are as

in the table below:

where , x, y, z 2 (0, 1), and x, y, z and  are further restricted so that p (a, Si) 2 0, 1

for all i = 1, ..7. This random choice rule fails Non-negativity, since e.g. S2  S1 while

p (b, S2) < p (b, S1). It does satisfy the other axioms. To see this, first of all observe that,

for all Si,
p(a,Si\{b})
p(a,Si)

= 1 = p(a,Si\{c})
p(a,Si)

= p(c,Si\{b})
p(c,Si)

and p(b,Si\{a})
p(b,Si)

=  = p(b,Si\{c})
p(b,Si)

= p(c,Si\{a})
p(c,Si)

,

so that Menu Independence holds. From these it is easy to see that the only case where

the premise of Third-alternative consistency is true is when removing c from S1, so that

p (a, {a, b})
p (a, {a, b, c})

=
p (a, S1\ {c})
p (a, S1)

= 1 >  =
p (b, S1\ {c})
p (b, Si)

=
p (b, {a, b})
p (b, {a, b, c})

Since however p(a,S1\{b})
p(a,S1)

= 1 >  = p(b,S1\{a})
p(b,S1)

, Third-alternative consistency holds. For

the remaining two axioms it is immediate to verify that both Neutrality (since its premise
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p (a, Si) p (b, Si) p (c, Si) p (a, Si)

S1 {abc} x y z 1 x y  z

S2 {ab} x y - 1 x y

S3 {ac} x - z 1 x z

S4 {bc} - y z 1  (y + z)

S5 {a} x - - 1 x

S6 {b} - 2y - 1 2y

S7 {c} - - z 1 z

Table 1: A random choice rule that fails Non-negativity

is never true) and Asymmetry hold. The latter is easily checked by inspection of the

following:

p (a, {a, b, c} \ {b}) = p (a, {a, b, c})

p (b, {a, b, c} \ {a}) 6= p (b, {a, b, c})
;
p (a, {a, b, c} \ {c}) = p (a, {a, b, c})

p (c, {a, b, c} \ {a}) 6= p (c, {a, b, c})

p (a, {a, b} \ {b}) = p (a, {a, b})

p (b, {a, b} \ {a}) 6= p (b, {a, b})
;
p (a, {a, c} \ {c}) = p (a, {a, c})

p (c, {a, c} \ {a}) 6= p (c, {a, c})

p (b, {a, b, c} \ {c}) 6= p (b, {a, b, c})

p (c, {a, b, c} \ {b}) = p (c, {a, b, c})
;
p (b, {b, c} \ {b}) 6= p (b, {b, c})

p (c, {b, c} \ {b}) = p (c, {b, c})

Finally we also show directly that there is no p, that returns the above probabilities.

Since p (a, Si) = x for all Si, in order to have p, = p it must be a  b, c and  (a) = x.

Then p,(b,{a,b})
p,(b,{b})

= (1  (a)), so that p, = p and p(b,{a,b})
p(b,{b}) =

1

imply the contradiction

1 > 1 x = 1

> 1.

Fails only Asymmetry: Let X = {a, b}, p (a, {a, b}) = x = p (a, {a}), p (b, {a, b}) =

y = p (b, {b}), x, y 2 (0, 1) and x+ y < 1.

It is immediate to verify that the other four axioms hold (noting that the premise of the

last three is false in both). If there were a p, that returned the above probabilities, let

a  b. Then p, (a, {a, b}) =  (a) (1  (b)) 6=  (a) = p, (a, {a}) since  (a) ,  (b) >

0. Similarly if b  a, so that the above random choice rule is not a random consideration

set rule.
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Fails only Menu Independence: Let X = {a, b, c}, and assume choice probabilities

are as in the table below:

p (a, Si) p (b, Si) p (c, Si) p (a, Si)

S1 {abc} x y z 1 x y  z

S2 {ab} x y - 1 x y

S3 {ac} x - z 1 x z

S4 {bc} - y z 1  (y + z)

S5 {a} x - - 1 x

S6 {b} - y - 1 y

S7 {c} - - z 1 z

Table 2: A random choice rule that fails Menu Independence

where  > 1, x, y, z 2 (0, 1), and x, y, z and  are further restricted so that p (a, Si) 2 0, 1

for all i = 1, ..7. This random choice rule fails Menu Independence, since across sets S1 and

S3 we have
p(a,S1\{c})
p(a,S1)

= 1 <  = p(a,S3\{c})
p(a,S3)

. Verifying that Non-negativity and Asymmetry

hold is immediate - for Asymmetry refer to the following:

p (a, {a, b, c} \ {b}) = p (a, {a, b, c})

p (b, {a, b, c} \ {a}) 6= p (b, {a, b, c})
;
p (a, {a, b, c} \ {c}) = p (a, {a, b, c})

p (c, {a, b, c} \ {a}) 6= p (c, {a, b, c})

p (a, {a, b} \ {b}) 6= p (a, {a, b})

p (b, {a, b} \ {a}) = p (b, {a, b})
;
p (a, {a, c} \ {c}) 6= p (a, {a, c})

p (c, {a, c} \ {a}) = p (c, {a, c})

p (b, {a, b, c} \ {c}) 6= p (b, {a, b, c})

p (c, {a, b, c} \ {b}) = p (c, {a, b, c})
;
p (b, {b, c} \ {b}) = p (b, {b, c})

p (c, {b, c} \ {b}) 6= p (c, {b, c})

For Neutrality, observe that it can be violated only in S1 when a is removed, as removing

either b or c leaves the impact on a unchanged, so that the premise of Neutrality fails. If

instead a is removed, then since p(b,S1\{a})
p(b,S1)

, p(c,S1\{a})
p(c,S1)

=  > 1, Neutrality holds. Finally,

for Third-alternative consistency too it su¢ces to consider S1. When either a or b are

removed the premise of the axiom is violated, since either p(b,S1\{a})
p(b,S1)

=  = p(c,S1\{a})
p(c,S1)

or
p(a,S1\{b})
p(a,S1)

= 1 = p(c,S1\{b})
p(c,S1)

. If c is removed we have p(b,S1\{c})
p(b,S1)

=  > 1 = p(a,S1\{c})
p(a,S1)

; since
p(b,S1\{a})
p(b,S1)

=  > 1 = p(a,S1\{b})
p(a,S1)

, Third-alternative consistency holds.
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To see that there is no p, that returns the above probabilities, observe that p, (a, {a}) =

 (a), so that to have p, (a, {a}) = p (a, {a}) it must be  (a) = x. Since p, (a, {a, b}) <

 (a), then b  a, so that p, (a, {a, b}) =  (a) (1  (b)) and to have p, (a, {a, b}) =

p (a, {a, b}) = x it must be 1   (b) = 1

. Similar arguments for {a, c} yield c  a and

1  (c) = 1

. Then p, (a, S1) =  (a) (1  (b)) (1  (c)) = x


6= p (a, S1), so that the

above random choice rule is not a random consideration set rule.

Fails only Neutrality: Let X = {a, b, c}, and assume choice probabilities are as in the

table below:

p (a, Si) p (b, Si) p (c, Si) p (a, Si)

S1 {abc} x y z 1 x y  z

S2 {ab} x y - 1 x y

S3 {ac} x - z 1 x z

S4 {bc} - y z 1 y  z

S5 {a} x - - 1 x

S6 {b} - 2y - 1 2y

S7 {c} - - z 1 z

Table 3: A random choice rule that fails Neutrality

where  >  > 1, x, y, z 2 (0, 1), and x, y, z, and  are further restricted so that

p (a, Si) 2 0, 1 for all i = 1, ..7. This random choice rule violates Neutrality since al-

though p(a,A\{c})
p(a,A)

, p(b,A\{c})
p(b,A)

> 1, we have p(a,A\{c})
p(a,A)

=  6=  = p(b,A\{c})
p(b,A)

. As for the other

axioms, it is immediate to verify that this random choice rule satisfies Non-negativity and

Asymmetry - for the latter refer to the following:

p (a, {a, b, c} \ {b}) = p (a, {a, b, c})

p (b, {a, b, c} \ {a}) 6= p (b, {a, b, c})
;
p (a, {a, b, c} \ {c}) 6= p (a, {a, b, c})

p (c, {a, b, c} \ {a}) = p (c, {a, b, c})

p (a, {a, b} \ {b}) = p (a, {a, b})

p (b, {a, b} \ {a}) 6= p (b, {a, b})
;
p (a, {a, c} \ {c}) 6= p (a, {a, c})

p (c, {a, c} \ {a}) = p (c, {a, c})

p (b, {a, b, c} \ {c}) 6= p (b, {a, b, c})

p (c, {a, b, c} \ {b}) = p (c, {a, b, c})
;
p (b, {b, c} \ {b}) 6= p (b, {b, c})

p (c, {b, c} \ {b}) = p (c, {b, c})
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For Menu Independence, observe that for all Si:
p(a,Si\{b})
p(a,Si)

= 1, p(a,Si\{c})
p(a,Si)

= , p(b,Si\{a})
p(b,Si)

=

p(b,Si\{c})
p(b,Si)

=  and p(c,Si\{a})
p(c,Si)

= p(c,Si\{b})
p(c,Si)

= 1. To check Third-alternative consistency, ob-

serve that the premise holds only when eliminating either a or c from S1. In the first case

we have p(b,S1\{a})
p(b,S1)

=  > 1 = p(c,S1\{a})
p(c,S1)

. Since however p(b,S1\{c})
p(b,S1)

=  > 1 = p(c,S1\{b})
p(c,S1)

,

Third-alternative consistency holds. In the second case we have p(b,S1\{c})
p(b,S1)

=  >  =

p(a,S1\{c})
p(a,S1)

, but since p(b,S1\{a})
p(b,S1)

=  > 1 = p(a,S1\{b})
p(a,S1)

, Third-alternative consistency is

satisfied. To see that the random choice rule in Table 3 is not a random considera-

tion set rule, observe that since p (c, Si) = z for all i, and since  (k) 2 (0, 1) for all

k 2 {a, b, c, a}, to have p (c, Si) = p, (c, Si) requires  (c) = z and c  a, b. Then

p, (a, {a, c}) =  (a) (1  (c)), so that p, (a, {a, c}) = p (a, {a, c}) = x requires

 (a) = x
1z . In addition,  (a) = p, (a, {a}) = p (a, {a}) = x implies the restriction

 = 1
1z . Similarly, p, (b, {b, c}) = p (b, {b, c}) = y and p, (b, {b, c}) =  (b) (1  (c))

requires  (b) = y
1z and p, (b, {b}) = p (b, {b}) = 

2y =  (b) requires  = 1
1z . Since

however  > , we have the contradiction 1
1z =  <  =

1
1z .

Fails only Third-alternative consistency: Let X = {a, b, c}, and assume choice

probabilities are as in the table below:

p (a, Si) p (b, Si) p (c, Si) p (a, Si)

S1 {abc} x y z 1 x y  z

S2 {ab} x y - 1 x y

S3 {ac} x - z 1 x z

S4 {bc} - y z 1 y  z

S5 {a} x - - 1 x

S6 {b} - y - 1 y

S7 {c} - - z 1 z

Table 4: A random choice rule that fails Neutrality

where  > 1, x, y, z 2 (0, 1), and x, y, z and  are further restricted so that p (a, Si) 2 0, 1

for all i = 1, ..7. This random choice rule violates Third-alternative consistency since
p(b,S1\{c})
p(b,S1)

= 1 <  = p(a,S1\{c})
p(a,S1)

while p(a,S1\{b})
p(a,S1)

= 1 <  = p(b,S1\{a})
p(b,S1)

. As for the other

axioms, it is immediate to verify that this random choice rule satisfies Non-negativity and
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Asymmetry - for Asymmetry see the following:

p (a, {a, b, c} \ {b}) = p (a, {a, b, c})

p (b, {a, b, c} \ {a}) 6= p (b, {a, b, c})
;
p (a, {a, b, c} \ {c}) 6= p (a, {a, b, c})

p (c, {a, b, c} \ {a}) = p (c, {a, b, c})

p (a, {a, b} \ {b}) = p (a, {a, b})

p (b, {a, b} \ {a}) 6= p (b, {a, b})
;
p (a, {a, c} \ {c}) 6= p (a, {a, c})

p (c, {a, c} \ {a}) = p (c, {a, c})

p (b, {a, b, c} \ {c}) = p (b, {a, b, c})

p (c, {a, b, c} \ {b}) 6= p (c, {a, b, c})
;
p (b, {b, c} \ {b}) = p (b, {b, c})

p (c, {b, c} \ {b}) 6= p (c, {b, c})

For Menu Independence, observe that p(a,S\{c})
p(a,S)

=  = p(b,S\{a})
p(b,S)

= p(c,S\{b})
p(c,S)

for all pertinent

S and p(a,S\{b})
p(a,S)

= 1 = p(b,S\{c})
p(b,S)

= p(c,S\{a})
p(c,S)

for all pertinent S, so that Menu Independence

holds. This also helps checking that Neutrality holds, as eliminating any of the alternatives

from S1 produces impact ratios for the other two alternatives only one of which is greater

than 1, so that the premise of Neutrality is violated. To see that this random choice rule

is not a random consideration set rule, note that

p, (a, {a, b})
p, (a, {a, b, c})

=

8
<

:
1 if a  c
1

1(c) otherwise

Since p(a,{a,b})
p(a,{a,b,c}) =  > 1, in order to have p, = p it must be  = 1

1(c) and c  a,

so that  (c) = 1

. Then substituting into p, (a, {a, c}) =  (a) (1  (c)) yields

p, (a, {a, c}) = (a)

. On the other hand, p (a, {a, c}) = x, so that p (a, {a, c}) =

p, (a, {a, c}) requires  (a) = x. Since p (a, {a, b}) = x =  (a), to have p, = p

it must be a  b. Then p, (b, {a, b, c}) =  (b) (1  (a)) (1  (c)) =  (b) (1 x) 1 ,

and since p (b, {a, b, c}) = y it must be  (b) = y
1x . Since 1  x 6= 1, we have that

p = p, is contradicted on {b}, since p (b, {b}) = y 6= y
1x =  (b) = p, (b, {b}).

B Necessity of the axioms

A1 (Non-negativity). For all a 2 A and b 2 A: p(a,A\{b})
p(a,A)

 1.

Let p, be a random consideration set rule. Then for any alternative a 2 A and b 2 A:

p (a,A\ {b})
p (a,A)

=

 (a)
Q

d2A\{b}:da
(1  (d))

 (a)
Q

d2A:da
(1  (d))

=

8
<

:

1
1(b) if b  a

1 if a  b
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so that p(a,A\{b})
p(a,A)

 1.

A2 (Asymmetry). For all a, b 2 A: p(a,A\{b})
p(a,A)

> 1, p(b,A\{a})
p(b,A)

6= 1.

Let p, be a random consideration set rule. Based on the arguments in the proof of

the necessity of A1 it follows that p (a,A) = p (a,A\ {b}) i§ a  b, so that by a similar

argument p (b, A) < p (b, A\ {a}) and p(b,A\{a})
p(b,A)

6= 1. For the converse, p(b,A\{a})
p(b,A)

6= 1

requires p(b,A\{a})
p(b,A)

= 1
1(a) , so that a  b and p (a,A) = p (a,A\ {b}).

A3 (Menu independence). For all a 2 A \B and b 2 A \B: p(a,A\{b})
p(a,A)

= p(a,B\{b})
p(a,B)

.

Let p, be a random consideration set rule. Then p(a,A\{b})
p(a,A)

=
(a)

Q

d2A\{b}:da
(1(d))

(a)
Q

d2A:da
(1(d)) =

8
<

:

1
1(b) if b  a

1 if a  b
=

(a)
Q

d2B\{b}:da
(1(d))

(a)
Q

d2B:da
(1(d)) = p(a,B\{b})

p(a,B)
as desired.

A4 (Neutrality). For all a, b 2 A and c 2 A: p(a,A\{c})
p(a,A)

, p(b,A\{c})
p(b,A)

> 1 ) p(a,A\{c})
p(a,A)

=

p(b,A\{c})
p(b,A)

.

Let p, be a random consideration set rule. Then on the basis of the argument for the

necessity of A1, and given that p(x,A\{c})
p(x,A)

> 1 for x 2 {a, b}, we have

p (b, A\ {c})
p (b, A)

=
1

1  (c)
=
p (b, A\ {c})
p (b, A)

as desired.

A5 (Third-alternative consistency). For all a, b, c 2 A: p(a,A\{c})
p(a,A)

< p(b,A\{c})
p(b,A)

)
p(b,A\{a})
p(b,A)

> p(a,A\{b})
p(a,A)

Let p, be a random consideration set rule. On the basis of the argument for the necessity

of A1, the premise of A5 requires p(b,A\{c})
p(b,A)

> 1, so that c  b. If p (a,A) < p (a,A\ {c}),

then we would have c  a, and the premise of A5 would fail, since p(a,A\{c})
p(a,A)

= 1
1(a) =

p(b,A\{c})
p(b,A)

. Then it must be p (a,A) = p (a,A\ {c}), so that a  c  b and p(b,A\{a})
p(b,A)

=

1
1(a) > 1 =

p(a,A)
p(a,A\{b}) from which the conclusion follows.
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