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Abstract 

In social dilemmas punishment costs resources, not just from the one who is punished but often also from the 
punisher and society. Reciprocity on the other side is known to lead to cooperation without the costs of 
punishment. The question at hand is whether punishment besides its costs brings advantages and how its 
negative side-effects can be reduced to a minimum in an environment populated by reciprocal agents. Various 
punishment mechanisms have been studied in the economic literature such as unrestricted punishment, 
legitimate punishment, cooperative punishment, and the hired gun mechanism. All these mechanisms are 
implemented in a simulation where agents can share resources and may decide to punish other agents when they 
do not share. Through evolutionary learning agents adapt their sharing/punishing policy. Despite the costs of 
punishment, legitimate punishment compared to no-punishment increased performance when the availability of 
resources was low. When the availability was high, performance was better in no-punishment conditions with 
indirect reciprocity. Furthermore the hired gun mechanism worked only as good as other punishment 
mechanisms when the availability of resources was high. Legitimate punishment leads to a higher performance 
than unrestricted punishment. Summarized, this paper shows that a well-chosen punishment mechanism can play 
a facilitating role for cooperation even if the cooperating system already adopted reciprocity. 
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1. Introduction 

From an evolutionary point of view cooperation is a double-edged sword. On the one hand, it 
can bring an evolutionary advantage to a group, since some tasks can only be achieved 
through cooperation or at least in a more efficient way through the contribution of the group. 
On the other hand, not investing in cooperation, but enjoying its resources seems to be the 
most efficient choice from an egoistic point of view. This is the typical free-rider problem that 
characterizes social dilemmas. Since selection in evolution takes place on the level of the 
individual, cooperators should be replaced by free-riders, putting cooperation to an end. So 
why is there cooperation? 

It is trivial to see that the classic mechanism of evolution does not directly select for 
generosity. However, indirect mechanisms were proposed how cooperating leads not just to 
an advantage for the group but also to the individual. Henrich (2004) catches this in a formula 



in which the chance for altruistic behavior positively correlates with the chance of others 
being cooperative. Nowak (2006) lists five rules under which cooperation can evolve. Each of 
these rules itself is sufficient to lead to cooperation in an evolutionary system. Only humans 
seem to have used all five during evolution. One of these is ‘indirect  reciprocity’  (IR).   IR  – 
more   specifically   ‘downstream   reciprocity’   (Nowak   and   Roch 2007) - implies that by 
cooperating an individual increases the chance that someone else will cooperate with him. IR 
will lead to cooperation if the chance of knowing how often someone has shared before is 
bigger  than  the  ratio  of  ‘costs  of sharing’/’benefit  of  sharing’. 

Social dilemmas have been widely studied by social psychologists (Dawes and Messick 2000; 
Messick and Brewer 1983), game theorists (Rapoport and Chammah 1965; Axelrod 1984), 
and political scientists (Ostrom 1990). Experimental economists have studied the emergence 
of cooperation with special reference to the problem of market failures in the provision of 
public goods (Ledyard 1995; Chaudhuri 2011). In recent years behavioral economists have 
explained cooperation in social dilemmas using the concepts of peer punishment and 
reciprocity (Fehr and Gächter 2000; Fehr and Gächter 2002). Fehr and Gächter let human 
subjects play a Public Goods Game were cooperation leads to a high pay-off for all if 
everyone cooperates, but the single player earns the maximum payoff when all the others 
cooperate and he/she free-rides. Free-riding is hence the unique Nash equilibrium of the 
game. Fehr and Gächter found that cooperation decreased during the game, but when players 
had the possibility to punish free-riders cooperation stabilized. 

In classical Public Goods Games strangers play with each other, knowing nothing about the 
others’ history. Under such conditions reciprocity mechanisms (like IR) cannot work, but 
punishment proved to be effective in keeping cooperation going.  

We hypothesize that punishment is more than just a stopgap to achieve cooperation, and that 
it can play a facilitating role for maximizing the efficiency of cooperation, even when it is not 
explicitly needed to keep it going. To test this hypothesis we implement an agent-based 
simulation in which we compare agent systems that can punish and use IR, with agent 
systems that only use IR. In all simulations IR will be sufficient for cooperation. 

The study of punishment mechanisms and reciprocity through simulation is not new. Among 
the most recent contributions, Jaffe and Zaballa (2010) compare a specific punishment 
mechanism (cooperative punishment) with the punishment mechanism used by Fehr and 
Gächter and find that their mechanism works better. However, it is not clear whether the 
increase in performance is stable with different settings of parameters in the simulation and 
how their mechanism performs compared to more sophisticated mechanisms proposed since 
Fehr and Gächter. Ye et al. (2011) found that if a group has the possibility to show 
appreciation for altruistic behavior, appreciation and altruistic behavior will become dominant 
in the group leading to cooperation. To the best of our knowledge our study is the first 
comparing many punishment mechanisms in one simulation. It is also the first analyzing the 
extra advantage punishment can give to a system of agents that are already sharing through 
the mechanism of reciprocity. 



Humans seem to have a feeling for when punishment is necessary. Obviously it is important 
to not punish too often, as punishment comes with a cost and accepting a little bit of free-
riding may be acceptable, but if one does not punish enough free-riding becomes dominant. In 
our simulation agents will have their tendency to free-ride (not cooperate) and their tendency 
to punish encoded in their genes. As in other Public Goods Games agents try to maximize 
their own earnings. Through mutation and selection agents learn when free-riding is for their 
own good and when punishment is necessary for the public good. 

The remaining part of the paper is organized as follows: in section 2 we present four different 
punishment mechanisms: Unrestricted punishment, legitimate punishment, cooperative 
punishment, and the hired gun mechanism. In section 3 we describe the implementation of the 
simulation and all punishment mechanisms. The results are presented in section 4. Section 5 
concludes. 

 

2. Punishment mechanisms 

Fehr and Gächter (2000; 2002) studied a form of peer punishment that is often defined as 
Unrestricted Punishment (UP). In their setting everyone can punish everyone else. This means 
that it is also possible for free-riders to punish cooperators. This phenomenon is called 
antisocial punishment and it is clearly destructive when punishment is meant to be a means to 
enforce cooperation (Herrmann, Thöni and Gächter 2010). Faillo, Grieco and Zarri (2013) 
propose a different punishment mechanism that they call Legitimate Punishment (LP). In LP 
only agents that are good cooperators can punish agents that are bad cooperators. This 
prevents antisocial punishment. Faillo et al. found that LP compared to UP saves resources to 
the group ensuring higher levels of cooperation among human players of a Public Goods 
Game. 

The Hired Gun Mechanism (HGM), as proposed by Andreoni and Gee (2011), restricts the 
possibility to punish to prevent antisocial punishment. In contrast to LP in HGM punishment 
is not carried out by peers, but by an external agent – the   ‘hired  gun’- who is in charge of 
punishing low contributors. In particular in Andreoni and Gee the hired gun always punished 
the agent that has contributed the least. Hence agents have an incentive to provide at least the 
second lowest level of contribution. 

The final mechanism that we consider is based on an agent based simulation from Jaffe and 
Zaballa (2010), called Co-operative Punishment (CP). In CP no restrictions are made on who 
may punish who, instead the costs of punishing are not paid by the individual that punishes 
but by the entire group. Punishment becomes thereby a less altruistic action. Jaffe and Zaballa 
found that CP was a much stronger stabilizer of cooperation than altruistic punishment.  

We go one step further than CP in our simulation. In UP, LP, and HGM punishment implies a 
cost both for the punisher and for the punished. The resources subtracted to the punished thus 
vanish. In many social situations this is not true. If we get a traffic ticket, we pay this amount 
to the government. We do not burn the money. Nevertheless punishment is still costly, as the 
society has to pay the police officer. In the punishment mechanism that we call   ‘Zero  Loss  



Punishment’  (ZLP)  the  costs  for  punishment  the  punisher  has  to  pay  are paid by all agents, as 
in CP, and the cost for the punished will be reallocated to all agents. From an agent’s point of 
view punishment will cost the ‘cost to punish’/‘number  of  agents’  but  will  pay  back  ‘loss  of  
punished’/‘number   of   agents’.  This  means   that   punishment  will   lead   to   a   small increase of 
resources for the punishing agent if the costs to punish are less than the energy the punished 
loses (as it is in our simulation and in almost all Public Goods Games). This implies that 
punishment   in   this   context   is   different   from   “altruistic”   and   completely   disinterested  
punishment activity observed in UP and LP. Although in ZLP punishment is not costly from 
an agent’s point of view, it is costly from a global point of view, as the cost to punish still 
vanishes. 

In figure 1 the four punishment mechanisms are classified according to two criteria: the 
presence of restrictions on punishment activity (restricted or unrestricted) and the presence of 
a net cost attached to the punishment activity (altruistic or not altruistic). 

 

Figure 1: Placement of punishment mechanisms w.r.t. altruism and restriction involved 

In our simulation we assume that also cooperation is costly. Agents must invest an extra 
amount x to cooperate/share y resources. This assumption of the model is based on the 
transaction cost theory by Williamson (1981) and captures the fact that moving resources 
from   one   actor   to   the   other   consumes   resources   (the   ‘transaction   costs’). If the transaction 
costs needed to cooperate with another agent are higher than the social synergy achieved, 
agents should not cooperate.  

 

3. Simulation 

Figure 2 shows a screenshot of the simulation, programmed with the open source software 
Breve 3D (Klein 2002), using the programming language Steve. No special libraries have 
been used for implementation.  

The white cubes in figure 2 represent resources. During the simulation a constant supply of 
resources is put into the simulation at random positions. Resources move toward the agent 
that is closest by and as soon as they reach the agent  they  are  ‘eaten’ (the object is destroyed) 



and the agent’s energy increases by 50. Because of the random positioning of resources, areas 
of the simulation differ in the amount of resources available. Without sharing of resources 
energy will be heterogeneous among agents. 

In the screenshot the green cones represent agents that are placed randomly in a quadratic, flat 
area. Within a neighborhood agents can punish or share with other agents. The neighborhood 
size is chosen such that on average every agent has five other agents to interact with (the 
average degree of the agent network is 5). Throughout a simulation an agent stays at his initial 
position, to avoid any effect of a certain kind of random movement of agents on cooperation 
as described by Smaldino and Schank (2012). Every iteration agents do three things: Decide if 
(and if yes, who) to punish, decide to share and consume energy. The way in which 
punishment works depends on the punishment mechanism and is described in the following 
paragraphs. 

 

Figure 2: Screenshot (green cones are agents, white cubes resources) 

Every agent is initialized with two fixed parameters in his genome: toleranceS and toleranceP 
(always positive doubles). Whenever an agent shares with another, this will increase his 
reputation by the amount he has shared. A sharing action only effects the reputation for 200 
iterations, so that the value of the reputation only gives information about the recent sharing 
history. An agent decides to share once per iteration with the poorest neighbor if that neighbor 
has toleranceS energy less. Whether this decision really leads to an action depends on a 
chance that is equal to others   reputation’/   ‘own   reputation’   (if   this   value   exceeds   1   it   is  
rounded to 1). Whenever an agent has the highest reputation he can be sure that others will 
share with him if he is the poorest neighbor of an agent. If his reputation is close to zero 
hardly anyone shares with him. This   is   the   implementation   of   ‘downstream   reciprocity’, as 
described in the first section (Nowak and Roch 2007). An agent punishes the richest neighbor 
once per iteration if that neighbor has toleranceP more energy. 

In simulations where UP is the punishment mechanism an agent has to pay an incentive of 
one energy point to punish another agent (distract five energy points from the other). In UP 
punishment will thus consume six energy points in total. In simulations where LP is used only 
agents with a higher reputation can punish agents with a lower reputation. With ZLP the costs 
of the incentive for punishing is payed by all agents collectivly and the energy that the agent 
who is punished loses is re-distributed to all agents. In HGM agents cannot punish each other. 
Instead nine ‘hired guns’ are evenly distributed in and observe a part of the area. Together 
they observe the entire field. Every gun observes about six agents. This number is similar to 



the group size used by Andreoni and Gee (2011). Furthermore it is the same number of agents 
that are in the neighborhood of agents in the other conditions. Within its neighboorhood a gun 
punishes the agent with the lowest reputation every 10 iterations. In all punishment 
mechanisms an agent has to invest six energy points in order to share five with an agent. 
Sharing thus leads to a loss of one energy point to the system of agents. 

Agents consume energy per iteration. If an agent has 0 energy he cannot punish nor share and 
his energy consumption is 0. The consumption of an agent grows quadratic with the energy an 
agent has (Figure 3). If the total energy is distributed among few agents, total consumption is 
much higher than in the case in which total energy is distributed among a larger number of 
agents. The extreme cases are those in which one agent has all the energy (maximum 
disparity) and the case in which energy is evenly distributed among all the agents (minimum 
disparity). This assumption of the model is based on the literature of economic inequality. It 
has been found that in societies where disparity is high economic growth phases are more 
likely to end than in societies where disparity is low (Berg, Ostry and Zettelmeyer 2012). 
Furthermore high disparity is linked to high crime rates (Fajnzylber, Lederman and Loayza 
2002) and bad health (Sapolsky 2005) in societies. In our model efficiency is therefore  at  its’ 
maximum when disparity is minimal, i.e. when agents share. This makes our interaction 
system similar to a typical social dilemma in which the single agent has the incentive to 
collect the maximum amount of energy for himself, but the highest level of energy for the 
society is reached when all the agents share their energy. 

 

Figure 3: Showing how total energy consumption of agents per iteration increases 
quadratically when total energy in the simulation increases. Red, when one agent has all 

energy, blue, when all agents have equal energy 
 

Every 50 iterations the agent with the worst fitness takes over slightly mutated values for 
toleranceS and toleranceP of the fittest agent. Energy and reputation are not changed. Every 
agent faces the trade-off between keeping energy high to have a high fitness and sharing to 
avoid punishment. The fitness of an agent is equal to its energy. Sharing brings also an 
indirect advantage since it decreases the disparity in the system, thereby the total energy 



consumption, and hence there will be more energy in the future that the agents can benefit 
from. Note that all agents keep their initial position and that the neighborhoods do not change 
during the simulation. 

All simulations end after 50.000 iterations and per simulation there are 50 agents. The amount 
of resources set into the simulations varies. Possible values are 50 (low), 100 (mid) and 200 
(high). This variable is called availabilityOfResources and it is in some way similar to the 
‘marginal  per  capita   return’ (MPCR) in standard Public Goods Games. Figure 3 shows that 
with growing energy in the system the difference between the blue and the red function 
increases. When the availabilityOfResources increases agents will lose proportionally more 
resources when their disparity is high. Cooperation thus becomes more important. This 
reminds of the MPCR: When being high rewarding cooperation more than when it is low. 

Per simulation only one punishment mechanism is used: no punishment and only sharing 
(NP), UP, LP, HGM and ZLP.  

Punishment mechanism and availability of resources are treated as the independent variables. 
The dependent variable will be the performance of the system of agents (operationalized as 
the average energy of all agents during the last 10.000 iterations). Furthermore we will look at 
the change of agent behavior during simulations and interactions between the independent 
variables. 

 

4. Results 

Per possible combination of the two independent variables 30 simulations were performed, 
leading to 3 (availabilityOfResources) x 5 (punishment mechanism) x 30 = 450 simulations. 
Within the groups based on availabilityOfResources and punishment mechanism the average 
energy level during simulations was distributed close to normal (kurtosis and skewness 
always between -1.2 and 1.0). Hence an ANOVA was used to analyze the effect of the 
independent variables on average energy of agents. For a better understanding table 1 gives an 
overview of terms that we use in this section and their operationalization. 

average energy average energy of all agents during simulation 
disparity average standard deviation of energy during simulation 
sharing actions average number of sharing actions per iteration during simulation 
(antisocial) punishments average number of punishments per iteration during simulation 
coefficient of variation disparity / average energy 

 

Table 1: Operationalization of terms 

Figure 4 (left) shows the average energy of all simulations during the last 10.000 iterations. 
When the availabilityOfResources was ‘low’ unrestricted punishment (UP), legitimate 
punishment (LP) and zero loss punishment (ZLP) were performing better than no punishment 
(NP). This difference was statistically significant only for NP vs. ZLP (p = 0.029), not for UP 
(p = 0.135) and LP (p = 0.085). The hired gun mechanism (HGM) was performing the worst 
when availabilityOfResources is   ‘low’ and the difference NP vs. HGM was significant (p = 



0.042). The right punishment mechanism (ZLP) thus can increase the performance of agents 
that have to share resources when the availability of resources is low. But the wrong 
mechanism (HGM) can lead to a decrease.  

Figure 4 (right) shows that the UP, LP and ZLP were the conditions where most sharing took 
place when availabilityOfResources was ‘low’. It seems that when the availability of 
resources is low indirect reciprocity as used in NP is not strong enough to enforce cooperation 
in a system. Avoiding punishment can be an extra motivator for agents to serve to public good 
instead of egoism. 

Things  change  when  the  availability  of  resources  is  ‘high’.  Here  NP  is  performing  the  best  of  
all mechanisms. Differences are significant for NP vs. UP (p < 0.001), LP (p = 0.002) and 
ZLP (p = 0.026). For HGM the difference was only marginally significant (p = 0.081). It 
seems that when there are many resources available to a system of agents punishment wastes 
resources and is a bad ingredient for efficient cooperation. Opposite to the simulations where 
availabilityOfResources was low figure 4 (right) shows that the differences in performance of 
mechanisms is not associated with the amount of sharing actions during the simulations when 
availabilityOfResources is  ‘high’  or  ‘mid’. 

 

Figure 4: Average energy (left) and sharing actions (right) in various simulations. Bars 
indicate the 95 % confidence interval 

When availabilityOfResources was   ‘mid’  none of the differences in figure 4 (left) between 
punishment conditions and NP were statistically significant. Furthermore no punishment 
mechanism differed from any other mechanism significantly. 

Furthermore we can observe in figure 4 (left) that HGM becomes more effective compared to 
other mechanism that include punishment if the availabilityOfResources increases. It seems 
that periodically punishment by an external agent has the best effect when the availability of 
resources is high. Otherwise punishment should be conducted by the agents themselves.  

We can observe that LP is always performing better than UP. Figure 5 (left) shows how many 
punishments were performed per iteration during the simulations (note that in NP punishment 



was not possible). For the figure data from the simulations where availabilityOfResources was 
‘high’  is  used,  but  the  picture  is  similar for  ‘low’  and  ‘mid’. Figure 5 (right) shows how much 
of this punishment was antisocial punishment (antisocial punishment is only possible for 
punishment mechanisms UP and ZLP). In the simulations with UP more than half of all 
punishment was antisocial punishment. Antisocial punishment is not just a waste of resources 
but is also used to decrease the fitness of cooperators. This is clearly not effective. In the LP 
simulations the system had to use much less punishments to keep cooperation going. 
Interestingly the ratio between punishment actions in general and antisocial punishment is 
almost exactly the same in ZLP. Nevertheless, as discussed in the previous sections, ZLP is 
performing as well as LP, sometimes even better. The performance of ZLP may increase 
significantly when it avoids antisocial punishment by incorporating legitimate punishment. 

 

Figure 5: Development of punishment actions (left) and antisocial punishments (right) during 
simulations. For reasons of clarity every data point represents the average of 500 iterations.  

It is also noticeable that after the first 10.000 iterations the amount of punishment actions was 
quite constant during the course of the simulations (figure 5, left). Punishing others (though it 
was altruistic punishment in case of UP and LP) must have brought an (indirect) evolutionary 
advantage to the individual to remain encoded in the agents’ genes. 

Figure 6 (left) shows that average energy and the disparity (variation of energy level of 
agents) during a simulation are negatively correlated. In figure 6 (right) we see that ZLP was 
always the mechanism leading to the lowest disparity. In the figure we use the coefficient of 
variation (definition in table 1) to correct for different average energy in the conditions. As we 
already saw in figure 4 (left) ZLP was not always the best performing mechanism in terms of 
average energy of agents. Keeping the disparity low among agents seemed to be not as 
effective when the availability of resources was high, than when it was low. When 
availabilityOfResources was ‘high’   it   seems   that  NP   and  HGM   are   better   in   balancing   the  
costs of sharing and a high disparity within the system. 



 

Figure 6: Left, disparity and average energy are negatively correlated 
(availabilityOfResources =  ‘mid’). Right, Coefficient of variation of agent’s energy during the 

last 10.000 iterations. 

 

5. Discussion 

With the help of an agent based simulation we showed that punishment can be a facilitator for 
effective cooperation. Punishment is not just a stopgap for cooperation when agents lack 
information about each other but can bring an additional coordinative advantage. In our 
simulation selection took place on the agent level. Since punishment was constant during 
evolution (figure 5) we showed that (altruistic) punishment is rational not just on a group 
level, but also for individuals. However, when which punishment mechanism works best and 
if it can play a facilitating for maximizing the efficiency of cooperation, even when it is not 
explicitly needed to keep it going. If punishment really facilitates cooperation depends on the 
kind of environment in which agents interact. 

Analysis of the simulations has shown that punishment mechanisms are most powerful as a 
facilitator of the effectiveness of cooperation if the availability of resources is low. Because of 
the energy consume function of agents this corresponds to Public Goods Games where the 
marginal per capita return (MPCR) is low. The MPCR works as a motivator for cooperation 
in Public Goods Games and the lower the return the lower the willingness of subjects to 
cooperate (Kim and Walker 1984). It seems that mechanisms like indirect reciprocity, giving 
all responsibility for cooperation to the individual, works not strong enough as a facilitator to 
ensure cooperation in these situations. It seems to be necessary and effective to give the group 
through punishment the possibility to steer cooperation when MPCR is low. 

The results have also shown that the negative effects of antisocial and counter punishment can 
be effectively cut back through legitimate punishment. LP was always performing better than 
unrestricted punishment and this is confirming the results of Faillo et al. (2012). Although 
zero loss punishment was generally the punishment mechanism performing best, we expect 
ZLP’s  performance will increase when legitimate punishment is combined with it. 



The results for the hired gun mechanism have to be interpreted with care. The effectiveness of 
HGM may depend on variables like punishment frequency and group size. By fine tuning 
them performance of HGM may increase significantly. However we saw that HGM can 
outperform other punishment mechanism even without fine-tuning when the availability of 
resources was high. 

Research in Public Goods Games has focused on the extent to which punishment and 
reciprocity lead to cooperation, but cooperation should not be a goal in itself. In the 
simulations presented cooperation also consumes resources, leading to the necessity for 
agents to find a balance between benefits of cooperating and not cooperating. This is a fact 
ignored within the framework of Public Goods Games and our results show that it can be a 
crucial aspect when judging the effectiveness of resource management. 

In the presented simulations all agents were choosing the action that was best for them. 
Despite this egocentric point of view, agents did neither stop punishing nor sharing, although 
this did not bring a direct advantage to them. We confirm the findings of Ye et al. (2011) that 
through the incorporation of reciprocity in our evolutionary model the first- (why should we 
share?) and second-order social dilemmas (why should we altruistically punish?) resolve. 
Contrary to Ye et al. ‘altruistic’  behavior  was not rewarded directly by the group but indirectly 
through a higher chance that others will cooperate. Furthermore we did not make any 
assumptions about the types of agents that could exist and their behavior, they just evolved 
themselves. 

The environments investigated in the simulations only differ in one parameter: the availability 
of resources. Many more parameters such as a changing availability of resources during 
simulation, or a changing number of agents are possible and should be taken into account in 
order to increase the external validity of our results. Furthermore all agents were equal in their 
energy consumption and only differed with respect to toleranceS and toleranceP. Humans are 
far more diverse and research is needed to understand how well various punishment 
mechanisms can deal with this diversity. 

Because of the simulation methodology and the evolutionary learning algorithm underlying, 
this research has a strong computational flavor. It is not often fully realized that social 
simulation cannot only help to validate theories in economics and social science, but the 
findings can also be used to create or improve artificial social intelligence. The results point 
towards solutions for problems in e.g. decentralized power grids or wherever software agents 
have to autonomously share resources. In order to keep a power grid stable very quick 
decisions have to be made about when energy producers are allowed to feed electricity into 
the grid or when e.g. extra energy has to be bought from foreign countries. Instead of centrally 
steering this network, one could decide to give agents (energy producers) local control about 
the energy grid. This would avoid exploding computational complexity of decisions in such 
networks and increase the speed and flexibility. The objectives would be similar to those in 
the simulation: Maximize own energy feed-in, while sharing and punishing others on rights to 
feed energy. Given the increasing size, flexibility, and demands on such systems, we assume 
that more social intelligence is needed for agents within these networks. 
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Appendix 

In the following, you see a semi-formal description of objects active during the simulation. 
Objects contain a list of variables, the Init-method (executed when the object is created), an 
Iterate-method (executed during every iteration), and if needed a set of extra functions. The 
Controller is created as soon as the simulation starts and creates and coordinates all other 
objects. 

Controller 

Variables: 

availability- 

OfResources {50, 100, 200}. The larger this value the more new resources will be set into the 
environment per iteration 

condition {NP, UP, LP, ZLP, HGM} 

pot Energy that was distracted from agents that got punished (double) 

 

Init:  create 50 agents and availabilityOfResources resources; 

 If (condition == 5):  

create 9 guns and distribute them evenly in the field; 

Iterate: create availabilityOfResources/25 new resources; 



 every 50 iterations: tournament (); 

 if (condition == 4):  

spiltPot (); 

splitPot (): for every agent: energy += pot/50; 

 pot = 0; 

tournament (): b = agent with highest energy; 

 w = agent with lowest energy; 

 w.toleranceS = (b.toleranceS + randomGauss); 

 w.toleranceP = (b.toleranceP + randomGauss); 

 

Agent 

Variables:  

energy   A double that decreases to zero with every iteration. Increases with every resource 
eaten. 

reputation decreases over time to a minimum of 1. If an agent shares this value increases. 
(double) 

toleranceS threshold value (double), if another agent in the neighborhood has energy < (own 
energy – toleranceS) agent will share with this agent 

toleranceP  threshold value (double), if another agent in the neighborhood has energy > (own 
energy + toleranceP) agent will punish this agent 

neighbors list of agents within a 40 units radius.  

 

Init:   position = ( random(-100, 100), random (-100, 100) ); 

toleranceS = random(0, 100); 

toleranceP = random(0, 100); 

energy = 100; 

reputation = 1; 

Iterate:  energy -= (energy/100)^2; 

  If (energy < 6):  

end iterate; 

  a = agent in neighbors with lowest energy; 

If (a.energy < (energy - toleranceS) ): 

share (a, reputation/a.reputation); 



  If (controller.condition < 5): 

a = agent in neighbors with highest energy; 

If (a.energy > (energy + toleranceP) ): 

punish (a); 

share (a, p): If (random (0, 1) <= p): 

energy -= 6; 

a.energy += 5; 

reputation += 5; 

after 200 iterations: reputation -= 5; 

punish (a): energy -= 1; 

a.energy -= 5; 

 

Gun 

Variables:  

neighbors list of agents within a 50 units radius. 

   

Iterate:  every 10 iterations: 

   a = neighbor with lowest reputation; 

   punish (a); 

punish (a): a.energy -= 5. 

 

Resource 

Init:   position = [random(-100, 100), random (-100, 100)]; 

Iterate:  wander around randomly in field; 

  If (contact to agent):  

agent.energy += 50; 

free self; 


