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Abstract Level-k and team reasoning theories, among others, have been used to explain experimental evidence on 
coordination games. Both theories succeed in explaining some results and both fail in explaining other results. 
Sometimes it is impossible to discriminate between them. For this reason we  propose an experiment with pie games, 
similar to the ones used by Crawford et al. (2008). We observe subjects playing a series of coordination games, with 
different configurations of equality and Pareto-dominance, for which it is possible to provide clear predictions derived 
from both team reasoning and a particular cognitive hierarchy model: level-k  theory. In line with previous 
experimental results, we find that each theory fails to predict observed behaviour in some games. However, because of 
the design of our experiment, we can go deeper into the matter.  Our results show that Pareto dominance, fairness and 
uniqueness are good predictors for coordination choices. Secondly, we find mixed evidence about level-k and team 
reasoning theories. In particular team reasoning theory fails to predict choices when they picks out a solution which is 
Pareto dominated and not compensated by grater equality; Level-k theory fails in games in which it predicts the choice 
of one of not unique slices, and the unique choice is more equal than the alternative choices. This could represent a step 
forward to investigate the presence of team reasoning or level-k in coordinating behaviour.  
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1. Introduction 
!
That people can coordinate their actions in one-shot games with several Nash equilibria is no more 

a mystery in game theory. What is still under investigation is how they coordinate.  Experimental 

evidence from pure coordination, Hi-Lo and battle of the sexes games shows that players often 

coordinate successfully, although the coordination rate depends on some features of the games  (see 

Camerer 2003 for a review). 

Several explanations of coordination in equilibrium selection have been put forward in the recent 

literature. Among these, two main approaches are emerging: team reasoning and cognitive 

hierarchy theories. 

According to team reasoning, players look for the equilibrium that is best for the players as a 

‘team’1.  

In very general terms, in cognitive hierarchy models players aim at maximizing their payoff and 

their reasoning is grounded on beliefs about what opponents of lower cognitive level would do. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Colman!et!al.!(2008)!explains!how!team!reasoning!provides!a!justification!for!choosing!payoff@dominant!
equilibria,!a!concept!introduced!by!Harsanyi!and!Selten!(1998).!
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Players are assumed to be heterogeneous in terms of cognitive levels. Thus naïve level 0 players 

will choose at random. Level 1 players will best respond to expected level 0’s choice, level 2 player 

will best respond to expected level 1’s choice and so on. The experimental evidence on the 

emergence of focal points in simple coordination games (see Metha et al. 1994, Bardsley et al. 

2010, Crawford et al. 2008 and Isoni et al. 2012) reports mixed results about the relative merits of 

these two explanations: some results can be explained by both theories, some only by team 

reasoning, and some others only by cognitive hierarchy models.    

Despite the inconclusive findings, it is possible to infer some clues from the literature. It appears 

that there are some characteristics of the equilibria in these games, independent of the two theories, 

which attract players, so that team reasoning or cognitive hierarchy predictions work better when 

they pick out attractive equilibria.  Such characteristics may include Pareto dominance and equality 

of payoffs.  

However, a formal test of this conjecture has not been provided yet.  

This paper is an attempt to contribute to the solution of the puzzle. We observe subjects playing a 

series of coordination games, with different configurations of equality and Pareto-dominance, for 

which it is possible to provide clear predictions derived from both team reasoning and a particular 

cognitive hierarchy model: level-k  theory.  In line with previous experimental results, we find that 

each theory fails to predict observed behaviour in some games. 

However, because of the design of our experiment, we can go deeper into the matter. In particular, 

we observe that team reasoning theory fails to predict choices when it picks out a solution which is 

Pareto dominated and not compensated by greater equality; level-k theory fails in games in which it 

predicts a choice which is less equal than the alternative choices.  

Two alternative explanations can account for this evidence. One is related to Bacharach’s (2006) 

theory of team reasoning: according to this explanation, team reasoning and individual reasoning 

are two modes of reasoning which can be activated by different characteristics of the games.  

The other explanation is based on the assumption that  players are team reasoners, but not every one 

is so sophisticated in his reasoning to follow all the steps team reasoning requires to reach a 

solution. 

We call these players, who are mostly guided by Pareto dominance considerations, ‘naïve’ team 

reasoners. We show that allowing  the presence of naïve team reasoners organizes our results very 

well. 

Team reasoning and cognitive hierarchies theories, and experimental studies aimed at testing them 

will be analysed in section 2. In section 3 we present the experimental design and procedures, in 
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section 4 we discuss the theoretical predictions, in section 5 we present and discuss the results and 

section 6 shows our conclusions.  

 

2. Team reasoning and Level-k: experimental evidence and theoretical issues 
2.1. Team reasoning and level-k theories 

Team reasoning and cognitive hierarchy theories, as explanations of selection of equilibrium in 

coordination games, appeared as alternative explanation of focal points2.  Mehta et al. (1994) 

distinguish between two main explanatory strategies.  In one approach, which Mehta et al. attribute 

to Lewis (1969), players’ choices are grounded on primary salience (i.e. psychological propensities 

to pick particular strategies by default) and secondary salience (i.e. players’ beliefs about other 

players’ perceptions of primary salience).  In the other approach, attributed  to Schelling (1960), 

players look for a “rule of selection (and by extension, the label or strategy that it identifies)…  

[which] suggests itself or seems obvious or natural to people who are looking for ways of solving 

coordination problems” (p. 661).  A rule of this kind has Schelling salience. The first approach 

focuses on individual strategic reasoning, assuming that players, who differ in their cognitive 

abilities, aim at maximizing their payoffs by best replying to the strategy that they expect their 

opponents to play.  The second approach assumes that the shared objective of the players is to reach 

coordination, and in order to do so they try to find  an effective common rule of conduct.  

Metha et al. report an experimental investigation of pure coordination games.  Most of the findings 

of this experiment are compatible with both secondary salience and Schelling salience. They 

conclude: “Our results suggest  that  Schelling salience  may be  playing a  significant role.  A 

major priority must  now  be  to  construct  a  more  formal  theory  of  Schelling  salience  which 

will  generate  specific  hypotheses  that can  be  tested  experimentally” (p. 682). 

As applied to coordination games, team reasoning can be thought of as an attempt to provide this 

formal theory of  Schelling salience, whereas cognitive hierarchy theory is a development of 

primary and secondary salience.  However, both theories are more general than this.  

Different general formulations of team reasoning (or ‘we-reasoning’) have been proposed by David 

Hodgson (1967), Donald Regan (1980), Margaret Gilbert (1989), Susan Hurley (1989), Raimo 

Tuomela (1995, 2007), and Martin Hollis (1998). Within this body of literature, Robert Sugden 

(1993, 2000, 2003) and Michael Bacharach (1995, 1997, 1999, 2006) have developed game-

theoretic analyses. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!Focal!points!have!been!introduced!by!Schelling!(1960):!they!are!particular!Nash!Equilibria!on!which!players’!
expectations!converge.!
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The key idea is summarised by Bacharach as: “Roughly, somebody ‘team-reasons’ if she works out 

the best feasible combination of actions for all the members of her team, then does her part in it” 

(Bacharach 2006, p. 121). 

In other words, when people team-reason they seek an answer to the question: “What should we 

do?”, and they act accordingly. 

A shared view among scholars who study team reasoning is that in some circumstances people team 

reason, in some others not. Circumspect Team reasoning (Bacharach 2006), common reason to 

believe (Sugden 2003), game harmony (Tan and Zizzo 2008) and vacillation (Smerilli 2012) are 

models which try to explain this fact. However, why and when people team reason and why and 

when they do not remains still unclear. 

Level-k and cognitive hierarchy theories (Stahl and Wilson (1994, 1995); Nagel (1995); Ho, 

Camerer and Weigelt (1998); Bacharach and Stahl (2000); Costa-Gomes, Crawford and Broseta 

(2001); Camerer, Ho and Chong; Costa-Gomes and Crawford (2006)) can be thought as formalized 

models of strategic reasoning based on primary and secondary salience.  

In this work we concentrate on Level-k  theory3. In these models, each player belongs to a category 

(type) and follows a rule. In general a type L1 will anchor his/her beliefs in a nonstrategic L0 type, 

and best respond to this. A L2 player best responds to L1, and so on. Then k, k=1,2,3,... captures the 

level of reasoning.  Thus the behaviour of players at all levels above L0 is grounded in beliefs about 

L0 behaviour. The behaviour of the nonstrategic type L0 is different in different versions of the 

theory.  In some versions,  L0 chooses at random, which implies that L1 takes account only of his 

own payoffs; in other versions, L0 follows ‘payoff salience’, which means that he takes account 

only of his own payoffs; in still other versions, L0 favours primarily salient’ labels.  

 

2.2. Experimental evidence 

Experimental evidence on coordination games shows mixed results: sometimes it seems that 

subjects act according to team reasoning theories, sometimes according to level-k.  

Crawford et al. (2008) report experiments using pure coordination games with labels, battle of the 

sexes (with and without labels) and “pie” games.  In a pie game, subjects try to coordinate by 

choosing the same ‘slice’ of a three-slice pie.  Different slices have different payoff combinations, 

and one slice is coloured differently from the other two.  Crawford et al. propose a level-k model 

that explains the evidence from many of these games, but note that the choices made in some pie 

games can be explained only by team reasoning.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!Cognitive!Hierarchy!Models!and!level@k!theory,!applied!to!our!games,!give!the!same!qualitative!predictions.!
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Bardsley et. al (2010) report experimental evidence about behaviour in pure coordination games 

and Hi-Lo games. These experiments are run, with apparently minor variations, in two different 

places: the results from Amsterdam seem to support team reasoning, whereas the results from 

Nottingham can be explained by level-k theory. 

Isoni et al. (2012)  investigate games with the same payoff structures as those of Crawford et al’s. 

pure coordination and battle of the sexes games, but with different displays.  They too find mixed 

(but less extreme) results. 

By going deeper into this literature, at least three clues can be inferred.  

The first clue is that team reasoning predictions may be less likely to work when two or more  

equilibria are not Pareto ranked and team reasoning predicts the choice of one of these.  In such 

games, team reasoning has to deal with a conflict of interest between players.  

Crawford et al. (2008) compare pure coordination games  with battle of the sexes games, when both 

are presented with the same labelling. They find high rates of coordination in pure coordination 

games, but coordination fails in battle of sexes. 

A similar but less strong result is obtained by Isoni et al.(2012), who find that although focal points 

work in battle of sexes, they are less effective than in pure coordination games. This suggests that 

there is more individualistic reasoning when there is a conflict of interests.  

A second clue is that equality can favour team reasoning. If team reasoning recommends a solution 

with equal payoffs, this solution is liable to be chosen even if level-k recommends another solution. 

Crawford et al. (2008: 1456) report two pie games in which the slice that is distinguished by colour 

has the payoffs (5, 5). In ‘game AM1’ the other two slices have payoffs (5, 6) and (6, 5); in ‘game 

AL1’, these payoffs are (5, 10) and (10, 5).  Contrary to level k theory, but consistently with team 

reasoning, most subjects choose the (5, 5) slices in these games.  

 

A third clue is that when there is a conflict between  ex-post Pareto-dominance and ex-ante Pareto-

dominance, team reasoning predictions of ex-ante Pareto-dominant solutions can fail to work. 

Consider for example one of the ‘number task’ games proposed by Bardsley et al. (2010) in which 

two subjects must  coordinate by choosing the same option among: 

 

(10,10) (10,10) (10,10) (9,9)4. 

 

Team reasoning recommends (9,9), because is ‘unique’. If the players cannot distinguish between 

the (10,10) options, there is no rule which can guarantee that their payoffs will be (10,10).  So, from 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!The!payoffs!are!not!displayed!in!a!line,!but!they!have!a!neutral!display.!
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an ex ante perspective, and provided that the players are not extremely risk-loving, the rule “choose 

(9,9)” Pareto dominates the rule “pick a (10,10)”.   Then, if subjects ask themselves ‘what should 

we do?’, it is evident that (9,9) is the best choice for “us”. 

 Ex-post, however, once the choice is made and the other’s choice is known, (9,9) is Pareto 

dominated by (10,10). When this task was used in Bardsley et al.’s Amsterdam experiment, most 

subjects coordinated on (9,9), in a similar Nottingham experiment, most subjects distributed their 

choices over the (10,10) options, as predicted by level k theory. 

These clues have been noticed already.   

Crawford et al. (2008) allude to the first two clues when they conclude their paper with a 

conjecture: “We speculate that the use of team reasoning depends on Pareto-dominance relations 

among coordination outcomes and their degree of payoff conflict”(p. 1456).  With regard to the 

third clue, Bardsley et al. speculate that there was some tendency for the modes of reasoning used in 

previous pure coordination games (different in Amsterdam and Nottingham) to spill over to the 

number tasks.  Because the focal points in the Amsterdam pure coordination games were ‘odd ones 

out’, this may have primed players to think of the unattractive uniqueness of the (9, 9) option as a 

means of coordination.  The suggestion seems to be that the possibility of using ex ante Pareto 

dominance as a coordination device is not immediately obvious to many subjects. 

Although we can infer these conjectures from the literature, the results on which they are based are 

not systematic: for this reason we carry out a controlled test in which every game has a unique team 

reasoning choice and the relationship between Pareto dominance and equality varies between 

games. We use unlabelled games, in order to produce a more controlled test, by reducing the 

number of potential explanatory variables.   

 

3. The experiment: design, theoretical predictions and procedures 
As has been seen in the previous section, it is not always clear how and when team reasoning and 

level-k theories work as explanations of coordinating behaviour.  The experiment is aimed at 

discriminating between the two theories as explanation of coordination in simple games.  Moreover, 

it allows to investigate the three clues discussed in the previous section.  

For this reason, the experiment focuses on two relevant characteristics of equilibria: equality and 

Pareto dominance.  By using games with different configurations of Pareto dominance and equality, 

we are able to investigate the relative power of these characteristics to attract players to particular 

equilibria. 
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3.1 The pie games  

 

The experiment uses two-person pie games similar to those used by Crawford et al (2008), except 

that all the slices have the same colour.  Payoffs are chosen so that the predictions of both team 

reasoning and level-k theory are unambiguous, with a unique team reasoning optimal choice in each 

game. 

Formally, each game is a 3x3 coordination game with the payoff matrix shown in Figure 1.  The 

parameters x, y, v, w are always strictly positive and satisfy y≥x and {v, w} ≠ {x, y}.  The last 

condition ensures that the strategy pair (R3, R3) is unique in the sense that it can be distinguished 

from all other pairs by reference only to payoffs.  In contrast, (R1, R1) and (R2, R2) are 

symmetrical and so non-unique. 

  

[FIGURE 1] 

 

Figure 2 shows how a typical game was seen by subjects.  (This is a game with x=9, y=10, v=9, 

w=9.)  Three different displays of this game are shown, corresponding! to! ! three! different!

treatments!!A,B,C .  The labels ‘R1’, ‘R2’ and ‘R3’ were not seen by subjects.  In each treatment, 

both co-players see the same pie divided into three slices.  Each player independently chooses one 

of the slices.  If their choices coincide, they get the payoffs  that appear in the slice; otherwise they 

both get nothing.  Notice that, because players are referred to as ‘you’ and ‘the other’, there is no 

commonly known and payoff-independent labelling that distinguishes between the players.   

Because of this, the only labelling feature that distinguishes R1 and R2 from one another is the 

positions of their slices in the pie. 

 

[FIGURE 2] 

 

Our working assumption is that slice positions are nondescript in the sense of Bacharach (2006, p. 

16).  That is, descriptions (such as ‘left slice’) that in principle could be used to pick out particular 

equilibria do not easily come to mind to normal players.  Thus, players cannot solve the problem of 

coordinating on one of the slices R1 and R2 rather than the other.  By comparing behaviour in the 

three treatments, which differ only in the positioning of the slices, we will be able to test this 

assumption.  

The experiment investigated eleven games, G1 to G11.  The payoffs that define these games are 

shown in Table 1.   
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[TABLE 1] 

 

These games have different configurations of Pareto dominance and equality.  Games in which R1 

and R2 give equal payoffs (i.e. x=y) are shown by ‘E’ in the ‘R1/R2’ column.  Games in which R1 

and R2 weakly Pareto dominate R3 (i.e. x,y ≥ v and x,y ≥ w with at least one strict inequality) are 

shown by ‘P’ in this column.  Games in which R3 gives equal payoffs (i.e. v=w) are shown by ‘E’ 

in the ‘R3’ column.  Games in which R3 weakly Pareto dominates R1 and R2 (i.e. v ≥ x,y and  w ≥ 

x,y with at least one strict inequality) are shown by ‘P’ in this column.  By using 11 pie games we 

include all the possible combinations of entries (i.e. ‘E’, ‘P’, ‘E,P’ and ‘-‘) in the two columns5. 

 

 

3.2 Theoretical predictions 

The experiment is designed to test if and when players act according to team reasoning or level-k 

theories. In this section we analyse the theoretical predictions for each game, using the assumption 

that slice positions are nondescript.  

3.2.1 Team reasoning predictions 

In our pie games R3 differs from R1 and R2, because R1 and R2 are always symmetrical. What is 

the team optimal choice in this case? We shall prove that R3 is the team optimal choice in each 

game, but firstly we give an informal intuition for this result. 

Because R3 is unique, (v,w) is a payoff combination that the players, acting as a team, are able to 

obtain with certainty.  But if the players have no commonly-understood means of coordinating on 

one of R1 and R2, the only rule they can use is ‘pick one of R1 and R2’, which represents a lottery 

for the team.  Given the payoffs in our games, any team that was not extremely risk-loving would 

choose R3 rather than this lottery, even if R3 was Pareto-dominated by each of R1 and R2 

separately. 

To formalise this intuitive argument, we begin by defining a group utility function U, following 

Bacharach (2006, pp. 87-88).  In general, one of the problems in defining such a function is to deal 

with inequality and risk aversion, but the parameters used in our games make the implications of 

team reasoning insensitive to these characteristics.     

Following the literature on team reasoning, we make the following three assumptions about U. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5!Note!that!because!of!the!condition!{v,!w}!≠!{x,!y},!needed!to!ensure!R3!is!unique,!we!cannot!have!‘E’!(as!distinct!
from!‘E,!P’)!in!both!columns.!!Nor,!because!of!the!definition!of!Pareto!dominance,!can!we!have!‘P’!or!‘E,P’!in!both!
columns.!
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First, we assume that U is symmetrical, that is, for all payoffs s, t, U(s,t) = U(t,s).  According to 

Bacharach (2006), “It is reasonable to suppose that principles of symmetry between individual 

payoffs will be respected in U" (p.145). This property means that, when engaging in team 

reasoning, each player treats his own payoffs in exactly the same way as his co-player’s.  

Secondly, we assume increasingness, that is, U(s,t) is increasing in s and t.  This assumption is used 

by Bacharach, who calls it the ‘Paretianness Condition’. 

Finally, we assume that the group utility function has the property of risk aversion (that is, is 

concave in its arguments).  Risk aversion requires that: U(s,t)>U(2s,2t)/2. 

This seems a natural assumption, although Bacharach did not mention it in his work.  It is used by 

Bardsley et al (2010)6. 

We now show that these assumptions imply that, if the players are unable to coordinate on one of 

R1 and R2, then R3 is the team optimal option. 

If we normalise U(0,0) = 0, then (using symmetry), R3 is team optimal if U(v,w)>U(x,y)/2.  

Without loss of generality, let v≥w and y≤x.  Then a sufficient condition for R3 to be team optimal 

is U(w,w)>U(y/2,y/2).  By risk aversion, we have that U(y/2,y/2)>U(y,y)/2.  So a sufficient 

condition for R3 to be team optimal is U(w,w)> U(y/2,y/2).  By increasingness and symmetry, this 

is equivalent to w>y/2 or w/y >1/2.  In our games (see Table 1) the lowest value of w/y is 8/10.  

Thus R3 is (very strongly) team optimal in every game. 

 

3.2.2 Level-k prediction 

To make predictions of level-k individual reasoning, we need to make assumptions about L0 

players. The usual assumption in level-k models is that L0 choices are random, but in the model of 

Crawford et al., L0 responds to payoff salience and label salience, with a bias for payoff salience. In 

our games there are no labels, so it is impossible to follow label salience.  Initially, let us assume 

that L0 plays at random.  

Thus, at L0 in every game, for both players, pr (R1) = pr(R2) = pr(R3)= 1/3.  At each higher level, 

each player chooses a best reply to a co-player at the immediately lower level. 

For example, consider game 1.  At L0, players randomise over R1, R2 and R3.  At L1, player 1 best 

replies to an L0 co-player by choosing R2, and similarly, player 2’s best reply is R1.  At L2, player 

1’s best reply to an L1 co-player is R2, and similarly, player 2’s best reply is R1.  At L3, player 1 

chooses R1 and player 2 chooses R2; and so on (see Table 2).   

 

[TABLE 2] 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6!See!Gold!2012!for!a!review!of!Utility!group!function!properties.!
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Generalising, at L1 each player makes a best reply to L0. This is as if randomising over strategies 

that are optimal for her under the assumption that the other player randomises.  At L2 each player 

eliminates strategies not chosen by her co-player at L1, then optimises as at L1.  So, if for any 

player there is a unique choice at any level, this repeats itself for her co-player at the next level up, 

etc.  

This principle operates at L1 for the following games: 

@ in G2 and G6, both players choose R3 at L1 and this repeats itself at every higher level; 

@ in G1, G3, G9 and G11, one of the players has R1 as unique choice, the other has R2, and 

this repeats itself at every higher level. 

Also, if at L1 both players randomise over R1 and R2, this repeats itself at every higher level.   This 

happens in G5 and G7. 

In G4 and G8 we observe convergence to R3 from L2. 

G10 is different: at L1, one player has R3 as the unique choice and the other randomises over R1 

and R2. This pattern repeats itself indefinitely.  So at every level above L0, averaging over the two 

players, p(R3)= ½ and p(R1) = p(R2) = ¼ . 

These predictions are based on the assumption that at L0 players choose at random. If, instead, we 

use the ‘payoff salience’ specification of level-k theory, L0 will choose the slice with the highest 

own payoff, i.e. L0 behaves in the same way as L1 does in the random specification; L1 behaves 

like L2 and so on. This means that in the two cases the predictions are very similar, but in the 

‘payoff salience’ specification they are sharper, in the sense that convergence takes place at a lower 

level, as can be seen in table 3 for game 1. 

 

[TABLE 3] 

 

It is worth noticing that the proportion of R3 choices made by L1, and hence by all higher levels, is 

0 if y > v, w (remember that y ≥ x). This happens in games G1, G3, G5, G7, G9 and G11. A 

sufficient condition for this result is that R1, R2 ex-post Pareto-dominate R3, i.e. x ≥ v, w. 

The proportion of R3 choices made by L1 is 1 if v, w > y. This happens in G2 and G6. In addition, 

the proportion of R3 choices made by L2, and then by all higher levels, is 1 if v, w ≥ y. This 

happens in G4 and G8. So if R3 ex post Pareto-dominates R1, R2, level-k predicts a high frequency 

of R3 choices. 

Team reasoning and Level-k theory’s predictions for  games 1-11 are reported in table 4.  The 

‘predicted proportion of R3 choices’ averages over players 1 and 2.  In every case, and 
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independently of the distribution of levels, each theory either predicts that this proportion is strictly 

greater than 1/3 or predicts that this proportion is strictly less than 1/3.  Since completely random 

choice would produce a 1/3 proportion, these predictions would not be affected by adding noise to 

the model. 

[TABLE 4] 

 

3.3 Hypotheses 

Team reasoning and level-k theoretical predictions differ in games G1, G3, G5, G7, G9 and  G11, 

in which team reasoning predicts a high proportion of R3 choices whereas level-k predicts that this 

proportion will be low.  It follows that in these games it is possible to discriminate between the two 

theories. For each game we are able to test if the proportion of R3 choices is significantly higher or 

lower than 1/3. In the first case, the hypothesis of level-k reasoning can be rejected, whereas in the 

latter case, the hypothesis of team reasoning can be rejected. 

Secondly, we are interested in the effect of Equality and Pareto dominance on team reasoning.  

The experiment is designed to test the predictions of team reasoning under a range of different 

values of v, w, x, y. In particular we aim to test whether the tendency to choose the team optimal 

slice depends on ex post Pareto dominance and equality. 

With regard to ex post Pareto dominance we can distinguish three cases:  

 

a. (v,w) Pareto-dominates (x,y) and (y,x), i.e., R3 is team-optimal ex post as well as ex ante.  

This occurs in G2, G4, G6 and G8.  This condition can be expected to favour R3. 

b. (x,y) and (y,x) Pareto-dominate (v,w), i.e., R3 is Pareto-dominated ex post.  This is the case 

in G1, G3, G5 and G7.  This condition can be expected to disfavour R3.  

c. (x, y) and (y, x) are not Pareto-ranked relative to (v, w), i.e. the case of ‘conflict of interests’.   

This occurs in G9, G10 and G11.  This condition can be expected to disfavour R3. 

 

In relation to equality, the following cases can be distinguished: 

 

d. v=w and x ≠ y, i.e., R3 is equal and R1 and R2 are unequal.  This occurs in G1, G2 and G11.  

This condition can be expected to favour R3. 

e. v ≠ w and x = y, i.e., R3 is unequal and R1 and R2 are equal.  This occurs in G7, G8 and 

G10. This condition can be expected to disfavour R3. 

f. v = w and x = y, i.e., R1, R2 and R3 are all equal.  This occurs in G5 and G6.  There seems 

no reason to expect this condition in itself either to favour or disfavour R3. 
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g. v ≠ w and x ≠ y, i.e., R1, R2 and R3 are all unequal.  This occurs in G3, G4 and G9.  There 

seems no reason to expect this condition in itself either to favour or disfavour R3. 

 

Case c corresponds to the first clue mentioned in section 2, case d corresponds to the second clue 

and case b to the third.  

 

These conclusions are summarised in table 5.   

 

[TABLE 5] 

 

There are some games for which only one of the conditions a to e (i.e. conditions that favour or 

disfavour R3) holds.  There are some for which two of these conditions hold, both working in the 

same direction (either favouring or disfavouring R3).  And there are some for which two of these 

conditions hold, working in opposite directions. 

In particular: 

@ In G3 and G5, the only relevant condition that holds is b.  In G9 the only relevant condition 

that holds is c.  In these games we would expect R3 to be disfavoured. 

@ In G4 and G6, the only relevant condition that holds is a.  We would expect R3 to be 

favoured. 

@ In G2, the only relevant conditions that hold are a. and d.  We would expect R3 to be 

favoured. 

@ In G7, the only relevant conditions that hold are b. and e.  We would expect R3 to be 

disfavoured. 

@ In G10, the only relevant conditions that hold are c. and e.  We would expect R3 to be 

disfavoured. 

@ In each of G1, G8 and G11, two relevant conditions hold (b and d in G1, e and a in G8, and 

c and d in G11), working in opposite directions.  

The previous considerations represent a map, by the help of which we can look deeply into the 

evidence we obtain from the experiment. 

 

 

 

3.4 Procedures  
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A total of 194 subjects participated voluntarily in the experiment at the CEEL Lab of the University 

of Trento. 10 sessions were conducted (8 with 20 participants, 1 with 18 participants and one with 

16 participants) between June 2012 and November 2012. The experiment was programmed by 

using the z-Tree platform (Fischbacher, 2007). Subjects were undergraduate students (53.3% from 

economics and management, 42.5% females, 86.7% Italians).  On their arrival at the laboratory, 

participants were welcomed and asked to draw lots, so that they were randomly assigned to 

terminals. Once all of them were seated, the instructions were handed to them in written form 

before being read aloud by the experimenter. The participants had to answer several control 

questions and we did not proceed with the actual experiment until all participants had answered all 

questions correctly. 

Each subject played games G1 to G11, as described in Section 3.1, with payoffs expressed in Euros.  

Games were played anonymously.  Co-players were re-matched between games.  Different subjects 

played different sequences of games either as player 1 or player 2 .  In particular,  in each round 

each subject was assigned a game (from G1 to G11) in one of the three treatments A, B and C (see 

Appendix 1).  For example, in a 20 subjects session, subject 1’s first game was G1 in treatment 1, 

she played as player 1, with subject 6 as player 2. 

Subject 2’s first game was  G11 in treatment B, she played as player 1with subject 7 as co-player; 

and so on. 

No feedback was given until all eleven games had been played.  At the end of the experiment one of 

the eleven rounds was randomly selected and subjects were paid according to the outcome of the 

game they played in that round. Subjects received also a show up fee of € 3.  The average earning 

for each participant was € 6.50.  Sessions averaged approximately 40 minutes. 

 

4. Results 
Table 6 reports the distribution of  R1, R2 and R3 choices across treatments in the 11 games. 

[TABLE 6] 

First of all, remember that our team reasoning predictions depend on the working assumption that 

subjects cannot use position as a label to discriminate between R1, R2 and R3.  In order to check 

this assumption we compare, for each game, the distributions of choices between R1, R2 and R3 in 

the three treatments (which differ only in the positions of the slices).  Our test uses the null 

hypothesis that, for each game, the distribution of choices is the same across treatments (Pearson 

Chi-squared  in Appendix 2).  
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In particular, our focus is on the proportions of R3 choices across  treatments. Aggregating R1 and 

R2 choices we do not find any significant  difference between treatments (see Appendix 2)7.   

We also test the null hypothesis that subjects chose at random. The null hypothesis is rejected in all 

the games except G108. 

Now, with these premises, we can present the principal results of the experiment. 

With regard to the theoretical predictions we can conclude that both theories fail in some games 

(see table 6).  

Team reasoning fails in predicting R3 choice in G3, G5 and G7, where the actual proportion of R3 

choices, averaged across players 1 and 2, is significantly smaller then 1/3.9 

In all these game R3 is weakly or strictly Pareto dominated ex post: all these games satisfy 

condition b (see section 3.3) .  G7 also satisfies condition e (R3 is unequal, whereas R1, R2 are 

equal).  According to both conditions, R3 should be disfavoured.  

However, condition b is also satisfied in G1 (R3 is weakly Pareto dominated), but in this game R3 

is chosen by 74% of subjects.  G1 differs from G3, G5 and G7 in that it satisfies both b (which 

disfavours R3) and d (which favours it).  It seems as though the equality of R3 compensates for its 

being ex post Pareto dominated.10 

Level-k fails in predicting that R3 will not be chosen in G1, G9, and G11, where the proportion of 

R3 choices, averaged across the two players, is significantly greater than 1/3. In G1 and G11, R3 is 

equal and R1 and R2 are not (i.e. condition d is satisfied).  In G9, all three outcomes are unequal, 

but R3 is clearly less unequal than R1 and R2. 

In the rest of the games both theories agree and they work well. The only exception is G10, in 

which both theories fail: the proportion of R3 choices is not significantly different from 1/3.  This 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7!When!we!consider!the!disaggregated!frequencies!of!R1,!R2,!and!R3!choices,!we!find!that!the!only!systematic!
effect!is!that!in!treatment!A,!in!games!with!x!=!y,!!R1!is!chosen!more!frequently!than!R2.!!In!some!cases,!test!
results!are!not!reliable!because!the!expected!number!of!observations!in!some!cells!is!too!small,!as!in!G2!and!G6.!
The!only!case!in!which!we!have!to!reject!the!null!hypothesis!that!the!proportion!of!R3!choices!is!the!same!across!
treatments!also!by!aggregating!R1!and!R2!is!G9,!in!which!x!≠y!and!the!difference!between!treatments!is!the!
result!of!the!behaviour!of!player!2!in!treatment!C.!
8!Chi!squared!test!for!goodness!of!fit:!!
Player!1!Treatment!1:!Chi!sq.=16.29,!p!=!.0003;!!Player!1!Treatment!2:!Chi!sq.=!2.26,!p!=!.3225;!!Player!1!
Treatment!3:!Chi!sq.=!4.16,!p!=!.1249;!!
Player!2!Treatment!1:!Chi!sq.=!7.82,!p!=!.02;!Player!2!Treatment!2:!Chi!sq.=!1.32,!p!=!.5179;!Player!2!Treatment!3:!
Chi!sq.=!12.48,!p!=!.2894!
9!In!a!two!tail!Binomial!test!with n = 140 and probability of success (choice=R3) = 0.33, 59 or more successes is 
significantly more than random and 35 or fewer is significantly less than random (5% level).  With n = 194, the 
corresponding numbers are 79 and 53.  !
10!This!does!not!happen!the!other!way!round.! ! In!G8,!R3!ex!post!Pareto!dominates!R1!and!R2!(i.e.,!condition!a,!
favouring!R3)!but!is!unequal,!while!R1!and!R2!are!equal!(i.e.,!condition!e,!disfavouring!R3).!!Here!52%!of!subjects!
choose!R3.!
!
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game satisfies conditions c and e, both of which disfavour R3.  Level-k theory implies that R3 is 

chosen with probability 1/2 at each level above L0.    

 

5. Discussion 
The results of the experiment agree with previous literature: in coordination games neither level-k 

theory nor team reasoning can explain behaviour in all the games.  But differently from previous 

experiments, we obtain clearer and sharper results: we are able to identify general features of games 

in which team reasoning theory clearly fails in predicting choices, and of games in which it 

succeeds.  

To sum up, team reasoning fails when it predicts the choice of a slice that is ex post Pareto 

dominated by the other two and this is not compensated by greater equality (games G3, G5 and G7). 

Team reasoning fails also (but not as badly) in G10, where the team-optimal choice is unequal and 

there is conflict of interests (condition c). 

In order to explain the experimental evidence, we need a more general theory. 

One possible line of explanation is based on Bacharach’s theory. According to him, there exist two 

modes of reasoning: individual reasoning and team reasoning. So people sometimes team reason, 

sometimes not. 

For Bacharach, modes of reasoning are not chosen rationally. The process by which a mode of 

reasoning comes into play is based on frames: if the we-frame comes to mind, the subject will 

group identify and then she will start to we-reason. A frame can be defined as a set of concepts that 

an agent uses when she is thinking about a decision problem. It cannot be chosen, and how it comes 

to mind is a psychological process: 

 
“Her frame stands to her thoughts as a set of axes does to a graph; it 

circumscribes the thoughts that are logically possible for her (not ever but at 

the time). In a decision problem, everything is up for framing... also up for 

framing are her coplayers, and herself” (ib. p. 69). 

 

The we-frame, and therefore group identification, is favoured by certain characteristics of the 

games. This means that team reasoning can be activated when particular features are present. 

According to Bacharach (ib, pp. 82–83), one such feature is perceived interdependence, based on a 

recognition of ‘common interest’.  In a two-player game, the players have a common interest in 

some pair of strategies s* over some other pair s, if both prefer s* to s.  Common interest, in this 

definition, is related to our concept of Pareto dominance.  Another feature, called ‘harmony of 

preferences’ by Bacharach ib, pp. 63, 83), is related to the degree of conflict among payoffs. This 
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idea has been developed by Zizzo and Tan (2008). They propose a measure of game harmony, 

based on correlation between payoffs, which is related to our concept of equality. 

The results of our experiment seems to suggest that ex post Pareto dominance and equality play an 

important role in group identification; ex ante Pareto dominance, when conflicting with ex-post 

Pareto dominance, seems not to be sufficient. 

Another possible explanation of our data is based on the assumption that team reasoners can be 

more or less sophisticated.  When the R3 slice has both ex post Pareto-dominance and ex post 

equality, players can see that R3 is the best for the team even without using uniqueness. When, 

instead, ex-post Pareto-dominance and equality are not present, players are required to ‘see’ 

uniqueness; this means that they should be ‘sophisticated’ team reasoners. 

So far we have considered the distinction between level-k reasoners and team reasoners. We 

assumed the latter to be sophisticated enough to recognize the uniqueness of R3 and to be aware of 

the distinction between ex-ante and ex-post Pareto dominance.  However, we cannot exclude the 

existence of a different type of team reasoners, who, like the more sophisticated one, is willing to 

pursue the group interest, but at the same time does not recognize the uniqueness of R3 and adopts 

the simple rule of thumb of focusing on Pareto dominance and equality of the outcome. We call 

these agents ‘naïve’ team reasoners. 

In Bacharach’s circumspect team reasoning, there is space for individual and team reasoners. Team 

reasoners are aware of the presence of non team reasoners, and for this reason they maximize the 

utility of the team given the proportion of individual reasoners. In a similar way, to allow a presence 

of naïve team reasoners does not means that everybody is naïve: R1 and R2 choices could be the 

results of the presence of naïve team reasoners and of more sophisticated ones, who take in account 

the proportion of naïve reasoners. 

Assuming that the team utility function is increasing and concave,  naïve team reasoning organizes 

the data pretty well: it implies that R3 is the best option in G2, G4, G6, G9, G11 and R1 and R2 are 

the best options in G3, G5, G7, G10; the implication is not clear in G1 where R3 is equal but Pareto 

dominated by R1 and R2.  

It is worth noticing that the existence of naïve team reasoners can also explain some experimental 

results reported in previous literature. Take for example game ‘AM 4’ (figure 3) reported by 

Crawford et al. (2008), which is very similar to game G3. 

 

[FIGURE 3] 
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The sophisticated team reasoning solution for this game is B (for the same considerations we made 

in section 3.2.1).  According to Crawford et al., level-k theory predicts L and B. In this game 

subjects chose L and R, which is exactly what a naïve team reasoner does, and this is also the way 

the authors explain the results. They say that ‘B for both’ is less equitable and weakly Pareto-

dominated by ‘R for both’.  If we exclude B,  the players are left with a 2x2 battle of sexes game in 

which they will alternate between R and L, because there is no way to break the symmetry.  

Also, the choices of Nottingham subjects in the ‘number task’ games studied by Bardsley et al. 

(2010) can be explained by allowing the presence of naïve team reasoning. In these games there is a 

conflict between ex ante and ex post Pareto dominance. As we have already mentioned in section 

2.2, according to the authors, in the Amsterdam version of the experiment most of the players 

coordinated on (9,9) because they were primed to see the uniqueness of choices. In Nottingham 

version, without any priming, it seems as though players behave like naïve team reasoners. 

However, merely assuming the presence of naïve team reasoners would not explain coordination in 

pure coordination games and in games with conflict of interests (like battle of the sexes games). To 

solve a pure coordination games, team-reasoning players are required to re-describe the game in a 

way which requires some degree of sophistication. And experimental evidence shows that players 

are good at coordinating in pure coordination games.  

At the same time, experimental evidence shows that it is more difficult to coordinate in battle of the 

sexes games than in pure coordination games.  So if coordination is explained by team reasoning, 

we have to assume that team reasoning tends to be switched off by battle of the sexes games. 

Overall, the evidence suggests that behaviour in coordination games might be explained by 

introducing a model containing both individual and team reasoners, with team reasoners having 

different levels of sophistication, activated by the characteristics of the games.   

 

6. Conclusion 
Our experiment was designed with two main objectives: to discriminate between level-k and team 

reasoning theories, and to investigate three clues, already present in previous literature, about the 

effects of Pareto ranking of payoffs, equality, and differences among ex ante and ex post Pareto 

dominance.  

It represents a step forward to the understanding of coordinating behaviour. On the one hand, it 

confirms previous findings that neither team reasoning nor cognitive hierarchy models can 

completely explain experimental evidence. On the other hand it reveals how some characteristics of 

the equilibria in games, such as ex ante or ex post Pareto dominance and equality, can attract 

players.  
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As we have already mentioned in previous section, in order to explain the evidence, a more general 

theory is needed. Crawford et al. (2008) suggested that a ‘judicious’ combination of team reasoning 

and level-k theories, incorporating other considerations, is needed.  

One contribution to this debate is to introduce naïve team reasoners in the team reasoning theory: 

our conjecture is that people can team reason in a more or less sophisticated way, depending on the 

characteristics of the games. Maybe the ‘judicious’ combination of team reasoning and level-k 

theories could result in the introduction of a sort of level-k team reasoning theory, in which both, 

individual and team reasoners are present and both with different levels of sophistication.  

The answer is open: future works can verify this conjecture.  
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FIGURES AND TABLES 
 
 
Figure 1: Pie game’s payoff matrix. 
 

 R1 R2 R3 
R1 x,y 0,0 0,0 
R2 0,0 y,x 0,0 
R3 0,0 0,0 v,w 
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TABLES 
 
Table 1. Outcomes properties. 
Game Payoff R1/R2 R3 

 
R1 R2 R3   

G1 9,10 10,9 9,9 P E 
G2 9,10 10,9 11,11 - E,P 
G3 9,10 10,9 9,8 P - 
G4 9,10 10,9 11,10 - P 
G5 10,10 10,10 9,9 E,P E 
G6 10,10 10,10 11,11 E E,P 
G7 10,10 10,10 9,8 E,P - 
G8 10,10 10,10 11,10 E P 
G9 9,12 12,9 10,11 - - 
G10 10,10 10,10 11,9 E - 
G11 9,11 11,9 10,10 - E 

 
     

 
 
 
 
Table 2: Level-K theory’s prediction in Game 1 when L0 plays at random. 
  
GAME G1 L0 L1 

(best reply to L0) 
L2 
(best reply to L1) 

L3 
(best reply to L2) 

     

Player 1 choice R1, R2, or R3 R2 R2 R1 

Player 2 choice R1, R2, or R3 R1 R1 R2 

 
 
 
 
Table 3: Level-K theory’s prediction in Game 1 when L0 follows payoff 
salience. 
 
GAME G1 L0 

 
L1 
(best reply to L0) 

L2 
(best reply to L1) 

    
Player 1 choice R2 R1 R2 
    
Player 2 choice R1 R2 R1 
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Table 4. Predicted proportions of R3 choices. 
 
 Predicted proportion 

of R3 choices 
Game Team Reasoning Level-k 

L0 L1 L2 L3 
G1 1 1/3! 0 0 0 
G2 1! 1/3! 1 1 1 
G3 1! 1/3! 0 0 0 
G4 1! 1/3! 3/4 1 1 
G5 1! 1/3! 0 0 0 
G6 1! 1/3! 1 1 1 
G7 1! 1/3! 0 0 0 
G8 1! 1/3! 2/3 1 1 
G9 1! 1/3! 0 0 0 

G10 1! 1/3! 1/2 1/2 1/2 
G11 1! 1/3! 0 0 0 

 
 
 
 
 
Table 5. Characteristics of games 
Favoured!
choice!

Criterion! Characteristics! GAMES!

R1,!R2! b! R3!is!Par.!
dominated!by!R1,!
R2!

G1! ! G3! ! G5! ! G7! ! ! ! !

c! No!PD! ! ! ! ! ! ! ! ! G9! G10! G11!
e! R3!unequal,!R1,!R2!

equal!
! ! ! ! ! ! G7! G8! ! G10! !

R3! a! R3!Par.!dominates!
R1,!R2!

! G2! ! G4! ! G6! ! G8! ! ! !

d! R3!equal,!R1,!R2!
unequal!

G1! G2! ! ! ! ! ! ! ! ! G11!
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Table 6. Distribution of choices in games G1-G11, coordination rates and predictions.  
 
GAME G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 

 
Predicted R3 proportion 

 
Level-K < 1/3 > 1/3 < 1/3 > 1/3 < 1/3 > 1/3 < 1/3 > 1/3 < 1/3 > 1/3 < 1/3 

 
Team 
reasoning 

> 1/3 > 1/3 > 1/3 > 1/3 > 1/3 > 1/3 > 1/3 > 1/3 > 1/3 > 1/3 > 1/3 

 
Frequencies R1 

 
P1 4 0 51 17 48 0 50 23 7 38 1 

P2 16 0 48 15 46 1 49 28 24 45 8 

TOT.R1 20 
(14.3%) 

0 
(0%) 

99  
(51%) 

32  
(16.5%) 

94  
(48.5%) 

1 
(0.5%) 

99 
(51.1%) 

51  
(26.3%) 

31  
(16%) 

83 
(42.8%) 

 
9 

(6.4%) 
 

 
Frequencies R2 

 
P1 14 1 41 3 30 3 31 22 12 31 9 

P2 2 0 47 4 36 3 30 21 10 21 1 

TOT.R2 16 
(11.4%) 

1 
 (0%) 

88 
(45.3%) 

7 
(3.7%) 

66 
(34%) 

6 
 (3.1%) 

61 
(31.4%) 

43  
(22.2%) 

22 
(11.3%) 

52 
(26.8%) 

10 
(7.1%) 

 
Frequencies R3 

 
P1 52 96 5 77 19 94 16 52 78 28 60 

P2 52 97 2 78 15 93 18 48 63 31 61 

TOT. R3 104* 
(74.3% ) 

193* 
(99%) 

7# 
(3.7%) 

155* 
(79%) 

34# 

(17.5%) 
187* 

(96.4%) 
34# 

(17.5%) 
100* 

(51.5%) 
141* 

(72.7%) 
59  

(30.4%) 

 
121* 

(86.4%) 
 

* Proportion significantly (at 5%) higher than 1/3  (Two tails binomial test);  
 # Proportion significantly (at 5%) lower  than 1/3  (Two tails binomial test) 

 
TOT 140 194 194 194 194 194 194 194 194 194 140 

Coordination rates 

 56% 99% 41.2% 71.1% 42.2% 92.8% 32% 42.2% 57.7% 32% 74.3% 
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Appendix(1.(Games(sequences.(
!
!

!
!

!
!
!
!
!
!
!
!

Games&sequences&(20&subjects&sessions)

Subjects 1 2 3 4 5 6 7 8 9 10 11

1 1A(1) 2B(1) 3C(1) 4A(1) 5B(1) 6C(1) 7B(1) 8C(1) 9A(1) 10B(1) 11A(1)

2 11B(1) 1A(1) 2C(1) 3A(1) 4B(1) 10C(1) 6B(1) 7C(1) 8A(1) 9B(1) 5C(1)

3 4C(1) 5B(1) 11C(1) 2C(1) 3B(1) 9C(1) 10B(1) 6C(1) 7A(1) 8B(1) 1C(1)

4 3C(1) 4B(1) 5C(1) 1A(1) 2B(1) 8C(1) 9B(1) 10C(1) 6A(1) 7B(1) 11C(1)

5 2A(1) 3B(1) 4C(1) 5A(1) 11B(1) 7C(1) 8B(1) 9C(1) 10A(1) 6B(1) 1B(1)

6 1A(2) 3B(2) 5C(2) 2C(2) 4B(2) 6C(2) 8B(2) 10C(2) 7A(2) 9B(2) 11A

7 11B(2) 2B(2) 4C(2) 1A(2) 3B(2) 10C(2) 7B(2) 9C(2) 6A(2) 8B(2) 5C(2)

8 4C(2) 1A(2) 3C(2) 5A(2) 2B(2) 9C(2) 6B(2) 8C(2) 10A(2) 7B(2) 1C(2)

9 3C(2) 5B(2) 2C(2) 4A(2) 11B(2) 8C(2) 10B(2) 7C(2) 9A(2) 6B(2) 11C(2)

10 2A(2) 4B(2) 11C(2) 3A(2) 5B(2) 7C(2) 9B(2) 6C(2) 8A(2) 10B(2) 1B(2)

11 11A(1) 7B(1) 8C(1) 9A(1) 10B(1) 1A(1) 2B(1) 3C(1) 4A(1) 5B(1) 6A(1)

12 10A(1) 11B(1) 7C(1) 8A(1) 9B(1) 5A(1) 1B(1) 2C(1) 3A(1) 4B(1) 6B(1)

13 9A(1) 10B(1) 6C(1) 11C(1) 8B(1) 4A(1) 5B(1) 1C(1) 2A(1) 3B(1) 7A(1)

14 8A(1) 9B(1) 10C(1) 6A(1) 7B(1) 3A(1) 4B(1) 5C(1) 1B(1) 2B(1) 11A(1)

15 7A(1) 8B(1) 9C(1) 10A(1) 6B(1) 11B(1) 3B(1) 4C(1) 5A(1) 1C(1) 2A(1)

16 11A(2) 8B(2) 10C(2) 11C(2) 9B(2) 1A(2) 3B(2) 5C(2) 2A(2) 4B(2) 6A(2)

17 10A(2) 7B(2) 9C(2) 6A(2) 8B(2) 5A(2) 2B(2) 4C(2) 1B(2) 3B(2) 6B(2)

18 9A(2) 11B(2) 8C(2) 10A(2) 7B(2) 4A(2) 1B(2) 3C(2) 5A(2) 2B(2) 7A(2)

19 8A(2) 10B(2) 7C(2) 9A(2) 6B(2) 3A(2) 5B(2) 2C(2) 4A(2) 1C(2) 11A(2)

20 7A(2) 9B(2) 6C(2) 8A(2) 10B(2) 11B(2) 4B(2) 1C(2) 3A(2) 5B(2) 2A(2)

Round

<The<first<number<indicates<the<game<(from<1<to<11),<the<letter<after<the<<comma<corresponds<to<the<treatment<(from<A<to<B).<The<number<in<

parentheses<refers<to<the<role<(1=player<1;<2=player<2)<under<which<the<game<is<played.

Games&sequences&(18&subjects&sessions)

Subjects 1 2 3 4 5 6 7 8 9 10 11

1 1B(1) 2B(1) 3C(1) 4C(1) 5C(1) 6C(1) 7C(1) 8C(1) 9C(1) 10C(1) 11C(1)

2 11B(1) 1C(1) 2C(1) 3C(1) 4B(1) 10A(1) 6B(1) 7C(1) 8C(1) 9B(1) 5A(1)

3 4A(1) 11C(1) 3B(1) 1B(1) 2A(1) 9A(1) 10B(1) 8B(1) 6B(1) 7A(1) 5B(1)

4 3A(1) 4B(1) 5A(1) 2C(1) 1A(1) 8A(1) 9B(1) 10A(1) 7B(1) 6A(1) 11A(1)

5 1B(2) 4B(2) 3B(2) 3C(2) 2A(2) 6C(2) 9B(2) 10A(2) 8C(2) 7A(2) 11C(2)

6 11B(2) 2B(2) 5A(2) 1B(2) 4B(2) 10A(2) 7C(2) 8B(2) 6B(2) 9B(2) 5A(2)

7 4A(2) 1C(2) 3C(2) 2C(2) 5C(2) 9A(2) 6B(2) 8C(2) 7B(2) 10C(2) 5B(2)

8 3A(2) 11C(2) 2C(2) 4C(2) 1A(2) 8A(2) 10B(2) 7C(2) 9C(2) 6A(2) 11A(2)

9 11A(1) 7B(1) 8C(1) 9A(1) 10B(1) 1A(1) 2B(1) 3C(1) 4A(1) 5B(1) 6A(1)

10 10A(1) 11B(1) 7C(1) 8A(1) 9B(1) 5A(1) 1B(1) 2C(1) 3A(1) 4B(1) 6B(1)

11 9A(1) 10B(1) 6C(1) 11C(1) 8B(1) 4A(1) 5B(1) 1C(1) 2A(1) 3B(1) 7A(1)

12 8A(1) 9B(1) 10C(1) 6A(1) 7B(1) 3A(1) 4B(1) 5C(1) 1A(1) 2B(1) 11A(1)

13 7A(1) 8B(1) 9C(1) 10A(1) 6B(1) 11B(1) 3B(1) 4C(1) 5A(1) 1C(1) 2A(1)

14 11A(2) 8B(2) 10C(2) 11C(2) 9B(2) 1A(2) 3B(2) 5C(2) 2A(2) 4B(2) 6A(2)

15 10A(2) 7B(2) 9C(2) 6A(2) 8B(2) 5A(2) 2B(2) 4C(2) 1A(2) 3B(2) 6B(2)

16 9A(2) 11B(2) 8C(2) 10A(2) 7B(2) 4A(2) 1B(2) 3C(2) 5A(2) 2B(2) 7A(2)

17 8A(2) 10B(2) 7C(2) 9A(2) 6B(2) 3A(2) 5B(2) 2C(2) 4A(2) 1C(2) 11A(2)

18 7A(2) 9B(2) 6C(2) 8A(2) 10B(2) 11B(2) 4B(2) 1C(2) 3A(2) 5B(2) 2A(2)

Round

<The<first<number<indicates<the<game<(from<1<to<11),<the<letter<after<the<<comma<corresponds<to<the<treatment<(from<A<to<B).<The<number<in<

parentheses<refers<to<the<role<(1=player<1;<2=player<2)<under<which<the<game<is<played.



! 27!

!
!
!
!

!

Games&sequences&(16&subjects&sessions)

Subjects 1 2 3 4 5 6 7 8 9 10 11

1 11A(1) 2B(1) 3C(1) 4C(1) 5C(1) 6C(1) 7B(1) 8C(1) 9C(1) 10C(1) 1C(1)

2 5A(1) 1B(1) 2C(1) 3C(1) 4B(1) 10A(1) 6B(1) 7C(1) 8C(1) 9B(1) 11B(1)

3 4A(1) 11C(1) 1A(1) 5B(1) 2A(1) 9A(1) 8B(1) 6A(1) 10B(1) 7B(1) 3B(1)

4 11A(2) 11C(2) 2C(2) 4C(2) 5C(2) 6C(2) 8B(2) 7C(2) 9C(2) 10C(2) 1C(2)

5 5A(2) 2B(2) 1A(2) 3C(2) 4B(2) 10A(2) 7B(2) 6A(2) 8C(2) 9B(2) 11B(2)

6 4A(2) 1B(2) 3C(2) 5B(2) 2A(2) 9A(2) 6B(2) 8C(2) 10B(2) 7B(2) 3B(2)

7 11A(1) 7B(1) 8C(1) 9A(1) 10B(1) 1A(1) 2B(1) 3C(1) 4A(1) 5B(1) 6A(1)

8 10A(1) 11B(1) 7C(1) 8A(1) 9B(1) 5A(1) 1B(1) 2C(1) 3A(1) 4B(1) 6B(1)

9 9A(1) 10B(1) 6C(1) 11C(1) 8B(1) 4A(1) 5B(1) 1C(1) 2A(1) 3B(1) 7A(1)

10 8A(1) 9B(1) 10C(1) 6A(1) 7B(1) 3A(1) 4B(1) 5C(1) 1A(1) 2B(1) 11A(1)

11 7A(1) 8B(1) 9C(1) 10A(1) 6B(1) 11B(1) 3B(1) 4C(1) 5A(1) 1B(1) 2A(1)

12 11A(2) 8B(2) 10C(2) 11C(2) 9B(2) 1A(2) 3B(2) 5C(2) 2A(2) 4B(2) 6A(2)

13 10A(2) 7B(2) 9C(2) 6A(2) 8B(2) 5A(2) 2B(2) 4C(2) 1A(2) 3B(2) 6B(2)

14 9A(2) 11B(2) 8C(2) 10A(2) 7B(2) 4A(2) 1B(2) 3C(2) 5A(2) 2B(2) 7A(2)

15 8A(2) 10B(2) 7C(2) 9A(2) 6B(2) 3A(2) 5B(2) 2C(2) 4A(2) 1B(2) 11A(2)

16 7A(2) 9B(2) 6C(2) 8A(2) 10B(2) 11B(2) 4B(2) 1C(2) 3A(2) 5B(2) 2A(2)

8The8first8number8indicates8the8game8(from818to811),8the8letter8after8the88comma8corresponds8to8the8treatment8(from8A8to8B).8The8number8in8
parentheses8refers8to8the8role8(1=player81;82=player82)8under8which8the8game8is8played.

Round
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Appendix 2. Distribution of choices across treatments 
!

!
!

!
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GAME%G1 GAME%G2
Treat.A Treat.B Treat.C Treat.A Treat.B Treat.C

R1/R2 3 7 8 R1/R2 1 0 0
P1 P1 ) ) ) )

R3 25 14 13 R3 31 39 26
TOT 28 21 21 TOT 32 39 26
Binomial)two)sided)test)(n=R1+R2+R3)choices;)k=R3)choices;)p=0.33) p=0.000 p=0.001 p=0.008 Binomial)two)sided)test)(n=R1+R2+R3)choices;)k=R3)choices;)p=0.33)p=0.000 p=0.000 p=0.000
H0):)same)distr.)across)treatments);)Pearson)chi2(2))=)))5.62)))p>0.05 Pearson)chi2(2))=)))2.0524)))p>0.05

R1/R2 5 5 8 R1/R2 0 0 0
P2 P2 ) ) ) )

R3 23 16 13 R3 32 39 26
TOT 28 21 21 TOT 32 39 26
Binomial)two)sided)test)(n=R1+R2+R3)choices;)k=R3)choices;)p=0.33) p=0.000 p=0.000 p=0.008 Binomial)two)sided)test)(n=R1+R2+R3)choices;)k=R3)choices;)p=0.33)p=0.000 p=0.000 p=0.000
H0):)same)distr.)across)treatments);)Pearson)chi2(2))=)))2.63)))p>0.05 Pearson)chi2(2))=)))I))

Coord.%Rate%(%) 75 52.3 38 Coord.%Rate%(%) 96.9 100 100

GAME%G3 GAME%G4
Treat.A Treat.B Treat.C Treat.A Treat.B Treat.C

R1/R2 29 37 26 R1/R2 6 10 4
P1 ) ) ) ) P1 R2 ) ) )

R3 2 2 1 R3 27 29 21
TOT 31 39 27 TOT 33 39 25
Binomial)two)sided)test)(n=R1+R2+R3)choices;)k=R3)choices;)p=0.33) p=0.000 p=0.000 p=0.000 Binomial)two)sided)test)(n=R1+R2+R3)choices;)k=R3)choices;)p=0.33)p=0.000 p=0.000 p=0.000
Pearson)chi2(2))=))0.22))p>0.05 Pearson)chi2(2))=))1.04))p>0.05

R1/R2 30 38 27 R1/R2 8 5 6
P2 ) ) ) ) P2 ) ) ) )

R3 1 1 0 R3 25 34 19
TOT 31 39 27 TOT 33 39 25
Binomial)two)sided)test)(n=R1+R2+R3)choices;)k=R3)choices;)p=0.33) p=0.000 p=0.000 p=0.000 Binomial)two)sided)test)(n=R1+R2+R3)choices;)k=R3)choices;)p=0.33)p=0.000 p=0.000 p=0.000
Pearson)chi2(2))=)))0.82))p>0.05 Pearson)chi2(2))=)))1.89))p>0.05

Coord.%Rate%(%) 45 33 48 Coord.%Rate%(%) 75.7 69.2 68
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GAME%G5 GAME%G6
Treat.A Treat.B Treat.C Treat.A Treat.B Treat.C

R1 28 30 20 R1/R2( 0 0 3
R2 ( ( (( ( ( ( ( (

P1 R3 6 8 5 P1 R3 33 39 22
TOT 34 38 25 TOT 33 39 25

Binomial(two(sided(test((n=R1+R2+R3(choices;(k=R3(choices;(p=0.33) p=0.23 p=0.12 p=0.20 Binomial(two(sided(test((n=R1+R2+R3(choices;(k=R3(choices;(p=0.33)p=0.000 p=0.000 p=0.000
H0(:(same(distr.(across(treatments;(Pearson(chi2(2)(=((0.13(((p>0.05 Pearson(chi2(2)(=(((8.9157(((p<0.05

R1/R2 31 31 20 R1/R2 1 1 2
( ( ( ( ( ( ( (

P2 R3 3 7 5 P2 R3 32 38 23
TOT 34 38 25 TOT 33 39 25

Binomial(two(sided(test((n=R1+R2+R3(choices;(k=R3(choices;(p=0.33) p=0.001 p=0.06 p=0.20 Binomial(two(sided(test((n=R1+R2+R3(choices;(k=R3(choices;(p=0.33)p=0.000 p=0.000 p=0.000
H0(:(same(distr.(across(treatments;(Pearson(chi2(2)(=((1.79((p>0.05 Pearson(chi2(2)(=(1.28((p>0.05

Coord.%Rate%(%) 44 42 40 Coord.%Rate%(%) 97 97.4 80

GAME%G7 GAME%G8
Treat.A Treat.B Treat.C Treat.A Treat.B Treat.C

R1/R2 24 35 22 R1/R2 17 16 12
( ( ( ( ( ( ( (

P1 R3 7 5 4 P1 R3 14 23 15
TOT 31 40 26 TOT 31 39 27

Binomial(two(sided(test((n=R1+R2+R3(choices;(k=R3(choices;(p=0.33) p=0.25 p=0.004 p=0.06 Binomial(two(sided(test((n=R1+R2+R3(choices;(k=R3(choices;(p=0.33)p=0.18 p=0.001 p=0.02
(Pearson(chi2(2)(=((1.32(p>0.05 Pearson(chi2(2)(=(((1.38((p>0.05

R1/R2 25 33 21 R1/R2 16 21 12
( ( ( ( ( ( ( (

P2 R3 6 7 5 P2 R3 15 18 15
TOT 31 40 26 TOT 31 39 27

Binomial(two(sided(test((n=R1+R2+R3(choices;(k=R3(choices;(p=0.33) p=0.12 p=0.04 p=0.15 Binomial(two(sided(test((n=R1+R2+R3(choices;(k=R3(choices;(p=0.33)p=0.08 p=0.09 p=0.02
Pearson(chi2(2)(=(((0.05((p>0.05 Pearson(chi2(2)(=(((0.58(p>0.05

Coord.%Rate%(%) 32.3 40 19.2 Coord.%Rate%(%) 37 43.5 44.4
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GAME%G9 GAME%G10
Treat.A Treat.B Treat.C Treat.A Treat.B Treat.C

R1/R2 8 5 6 R1/R2 21 28 20
P1 * * * * P1 * * * *

R3 25 34 19 R3 13 10 5
TOT 33 39 25 TOT 34 38 25
Binomial*two*sided*test*(n=R1+R2+R3*choices;*k=R3*choices;*p=0.33) p<0.01 p<0.01 p<0.01 Binomial*two*sided*test*(n=R1+R2+R3*choices;*k=R3*choices;*p=0.33)p=0.58 p=0.49 p=0.20
H0*:*same*distr.*across*treatments;*Pearson*chi2(2)*=***1.89*p>0.05 Pearson*chi2(2)*=*1.18**p>0.05

R1/R2 10 10 14 R1/R2 21 27 18
P2 * * * * P2 * * * *

R3 23 29 11 R3 13 11 7
TOT 33 39 25 TOT 34 38 25
Binomial*two*sided*test*(n=R1+R2+R3*choices;*k=R3*choices;*p=0.33) p=0.000 p=0.000 p=0.28 Binomial*two*sided*test*(n=R1+R2+R3*choices;*k=R3*choices;*p=0.33)p=0.58 p=0.73 p=0.67
H0*:*same*distr.*across*treatments;*Pearson*chi2(4)*=***6.66***p<0.05 Pearson*chi2(2)*=***0.95***p>0.05

Coord.%Rate%(%) 60.6 69 36 Coord.%Rate%(%) 26.4 34.2 36

GAME%G11
Treat.A Treat.B Treat.C

R1/R2 2 6 2
P1 * * * *

R3 19 22 19
TOT 21 28 21
Binomial*two*sided*test*(n=R1+R2+R3*choices;*k=R3*choices;*p=0.33) p=0.000 p=0.000 p=0.000
Pearson*chi2(2)*=**1.94**p>0.05

R1/R2 3 2 4
P2 * * * *

R3 18 26 17
TOT 21 28 21
Binomial*two*sided*test*(n=R1+R2+R3*choices;*k=R3*choices;*p=0.33) p=0.000 p=0.000 p=0.000
Pearson*chi2(2)*=***1.57***p>0.05

Coord.%Rate%(%) 76.2 71.4 76.2


